St Aloysius College (Autonomous)

Mangaluru

Semester III- P.G. Examination - M.Sc. Mathematics

December - 2022

COMPLEX ANALYSIS - I

Time: 3 hrs.

Max Marks: 70

(14x5=70)

Answer any FIVE FULL questions.

- a) State and prove Lagrange's inequality in the complex form.
 - b) Show that z and z' corresponds to diametrically opposite points on the Riemann sphere if and only if zz' = -1
 - c) Find the values of $\sqrt[4]{-1}$.

(7+4+3)

- a) State and prove the Lucas's theorem.
 - $\left|\frac{a-b}{1-\bar{a}\,b}\right|=1$ if either |a|=1 or |b|=1. What exception must be b) Prove that made if |a| = |b| = 1?
 - c) Show that $u(x,y) = e^x \cos y$ is a harmonic function.

(7+4+3)

- 3. a) Let f(z) = u(z) + iv(z) be defined on an open subset U of $\mathbb C$ such that u and vhave continuous first order partial derivatives. If u and v satisfy C-R equations then prove that f(z) is analytic on U.
 - b) Prove that if all the zeros of a polynomial P(z) lie in a half-plane, then all the zeros of the derivative P'(z) also lie in the same half-plane.
- 4. a) Define the exponential function e^z and show that e^{iz} has a least positive period 2π and all other periods are integer multiples of 2π .
 - b) Show that $e^{a+b} = e^a \cdot e^b \ \forall a, b \in \mathbb{C}$.

(10+4)

- 5. a) If $\sum_{n=0}^{\infty} a_n z^n$, $a_n \in \mathbb{C}$ is a power series, then show that there exists R with $0 \le R \le \infty$ such that the series converges absolutely for every z with |z| < R, the sum of the series is an analytic function in |z| < R.
 - b) Prove that a sequence of complex numbers is convergent if and only if it is a Cauchy sequence.
- 6. a) Derive a necessary and sufficient condition under which the line integral $\int_{\gamma} p dx + q dy$ defined in a region Ω depends only on the end points of γ .
 - b) Show that there is a unique linear fractional transformation T with $T(z_2) =$ $1, T(z_3) = 0, T(z_4) = \infty$, where z_2, z_3, z_4 are three distinct points of the extended (10+4)complex plane.
- 7. a) State and prove Cauchy's theorem for a rectangle.
 - b) State and prove Morera's theorem.

(9+5)

- 8.a) If $\varphi(\xi)$ is continuous on an arc γ , show that $F_n(z) = \int_{\gamma} \frac{\varphi(\xi)}{(\xi z)^n} d\xi$ is analytic in each of the regions determined by γ and its derivative is $F'_n(z) = nF_{n+1}(z)$.
 - b) If f(z) is defined and continuous on a closed bounded set E and analytic on the interior of $\it E$, then the maximum of |f(z)| on $\it E$ is attained on the (9+5)boundary of E.

Reg	No.				
		A STATE OF THE PARTY OF THE PAR	Name and Address of the Owner, where		

St Aloysius College (Autonomous)

Mangaluru

Semester III - P.G. Examination -M.Sc. Mathematics

December - 2022

TOPOLOGY

Max. Marks :70

Time: 3 hours

Answer any <u>FIVE_FULL_</u> questions from the following:

- 1. a) Define and compare the standard, lower limit and k –topology on \mathbb{R} .
 - b) If \mathcal{B} is a basis for the topology of X and \mathcal{C} is a basis for the topology of Y, then prove that the collection $\mathcal{D} = \{B \times \mathcal{C} : B \in \mathcal{B} \text{ and } \mathcal{C} \in \mathcal{C}\}$ is a basis for the topology of $X \times Y$.
- 2. a) Define closure of a subset A of a topological space X. Prove that $x \in \overline{A}$ if and only if every neighbourhood of x intersects A.
 - b) Let X be a topological space and $A \subseteq X$. Define the interior of A and the boundary of A. Prove that closure of A is the disjoint union of Int(A) and Bd(A). (7+7)
- 3. a) If X is a Hausdorff space, then prove that every finite subset of X is closed in X. Is the converse true? Justify.
 - Prove that a subspace of a Hausdorff space is Hausdorff.
 - Prove that product of two Hausdorff spaces is Hausdorff. (6+3+5)
- Define open maps and closed maps. Show that a continuous open map need not be closed.
 - b) Prove that $\pi: X \times Y \to X$ defined by $\pi((x,y)) = x, \forall x \in X$ is continuous.
 - c) Let X be a metrizable space. Prove that a map $f: X \to Y$ is continuous if and only if $f(x_n) \to f(x)$ in Y whenever $x_n \to x$ in X. (5+2+7)
- Show that the union of a collection of connected sets in a topological space having a point in common is connected.
 - b) Prove that every path connected space is connected.
- Show that a topological space is compact if and only if for every collection $\mathcal C$ of closed sets in $\mathcal X$ satisfying the finite intersection property, the intersection $\cap \mathcal C$ is non-empty. (4+4+6)

Contd...

6. Define a homeomorphism. If $f: X \to Y$ is a bijective continuous map, where X is compact and Y is Hausdorff, then show that f is a homeomorphism.

(14)

- 7. a) Define a second countable space. If X is second countable, show that every open cover of X contains a countable subcollection covering X.
 - b) Define a separable space. Prove that every second countable space is separable.
 - c) Prove or disprove: Every second countable space is first countable.

(7+5+2)

8. State and prove the Tietze extension theorem.

(14)

St Aloysius College (Autonomous)

Mangaluru

Semester III - P.G. Examination - M.Sc. Mathematics

December - 2022

NUMERICAL ANALYSIS WITH COMPUTATIONAL LAB

Time: 3 hrs.

Max Marks: 70

Answer any FIVE FULL questions.

(14x5=70)

- 1. a) Apply Newton'-Raphson's method to determine a root of the equation $\cos x xe^x = 0$. Carry out four iterations.
 - b) Derive the secant method to find the root of an equation f(x)=0.
 - c) Find the real root of the equation $f(x) = x^3 5x + 1 = 0$ using the Regula-falsi method correct to three decimal places. (5+5+4)
- 2. a) Derive the Muller method to find the real root of the equation f(x) = 0.
 - b) Let i) α be a root of f(x) = 0 which is equivalent to $x = \emptyset(x)$.
 - ii) I, be any interval containing the point $x = \infty$.
 - iii) $|\emptyset'(x)| < 1$ for all x in I. Then the sequence of approximations x_0 , x_1 will converge to the root α provided the initial approximation x_0 is chosen in I.
 - c) Find a real root of the polynomial equation $2x^3 5x + 1 = 0$ by Birge-Vieta method. Carry out two iterations. Use initial approximation $p_0 = 0.5$.

(6+4+4)

3. a) Solve the equations

$$54x + y + z = 110$$

$$2x + 15y + 6z = 72$$

$$-x + 6y + 27z = 85$$

- by Gauss-Seidal iteration method. Carry out four iterations by taking $(0, 0, 0)^t$ as the initial solution.
- Find the largest eigen value and a corresponding eigen vector of the matrix

$$\begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

Carry out 5 iterations by taking $(1, 1, 1)^t$ as the initial eigen vector. (7+7)

- 4.a) Derive Gregory-Newton's forward interpolation formula. Also find the truncation error.
 - b) Given the following values of f(x) and f'(x)

x	f(x)	f'(x)		
-1	1	-5		
00	1	1		
1	3	7		

Estimate the values of f(-0.5) and f(0.5) using the hermite interpolation. The exact values are $f(-0.5) = \frac{33}{64}$ and $f(0.5) = \frac{97}{64}$. (7+7)

5. a) Derive composite trapezoidal rule. Find its truncation error.

- b) Evaluate the integral $I = \int_0^1 \frac{dx}{2x^2 + 2x + 1}$ by using Lobotto 3-point formula.
- c) Given the following values find the approximate values of f'(2.0) using linear and quadratic interpolation and f''(2.0) using quadratic interpolation.

i	0	1	2
x_i	2.0	2.2	2.6
f_i	0.69315	0.78846	0.95551

(6+4+4)

- 6. a) Evaluate $\int_{-2}^{2} \int_{0}^{4} (x^2 xy + y^2) dxdy$, h = k = 2 using the trapezoidal rule.
 - b) Derive 3-point guass-legendre quadrature formula.
 - c) Derive the Guass-Hermite one-point formula.

(6+6+2)

- 7. a) Solve the IVP $u' = -2tu^2$, u(0) = 1, h = 0.2 on [0,1] using euler's method.
 - b) Given the IVP y' = x + y, y(0) = 1, on [0, 1] with h = 0.2. estimate y(0.4) using i) Modified Euler-Cauchy method
 - ii) Heuns' method.

(6+8)

(7+7)

- 8. a) Solve the IVP y' = 2xy, y(0) = 3, with h = 0.2 in the interval [0, 0.4]. Use the fourth order classical Runge-Kutta method.
 - b) Solve the IVP u' = t + u, u(0) = 1 on [0,1] with h = 0.2 using Adam's Bashforth third order method.

Reg. No.	and the same			ACCUPANT OF	2000	or comment
reciti.	100,000,000	F105851	NAME OF THE OWNER, OWNE			

St. Aloysius College (Autonomous), Mangaluru

Semester III P. G. Examination - M. Sc. Mathematics

December 2022

Commutative Algebra

Time: 3 Hours

Max. Marks: 70

Answer any FIVE full questions.

- (a) Define a nilpotent element in a ring. Prove that f = a₀ + a₁x + a₂x² + · · · + a_nxⁿ ∈ A[x] is nilpotent if and only if a_i is nilpotent for all 0 ≤ i ≤ n.
 - (b) Define the radical of an ideal in a ring. Prove that the radical of an ideal I is the intersection of all prime ideals which contain I.
 (5+9)
- (a) If J(A) denotes the Jacobson radical of a ring A then prove that y ∈ J(A) ← 1 − xy is a unit in A for every x ∈ A.
 - (b) In the ring A[x], show that the Jacobson radical is equal to the nilradical.
 - (c) Let $f: A \to B$ be a ring homomorphism. Define extended and contracted ideals. For the ideals I and J in A, Prove that $(I+J)^e = I^e + J^e$ and $r(I)^e \subseteq r(I^e)$. (5+5+4)
- (a) Let P₁, P₂,..., P_n be prime ideals in a ring A. If I is an ideal of A contained ∪_{j=1}ⁿ P_j, then show that I ⊆ P_j for some j.
 - (b) Define the prime spectrum Spec(A) of a ring A. Prove that Spec(A) is a compact topological space. (7+7)
- 4. (a) Define annihiltor Ann(M) of an A-module M. For any two A-modules M and N, show that $Ann(M+N) = Ann(M) \cap Ann(N)$.
 - (b) State Nakayama's lemma. Let M be a finitely generated A module, N a submodule of M, I be an ideal of A contained in the Jacobson radical of A. If M = IM + N, then show that M = N.
 - (c) Let M be a finitely generated A module and $\phi: M \to A^n$ a surjective homomorphism, where $n \in \mathbb{N}$. Show that $\ker \phi$ is finitely generated. (5+5+4)
- 5. (a) Let g: A → B be a ring homomorphism, S be a multiplicatively closed subset of A such that g(s) is a unit in B for all s ∈ S. Prove that there exists a ring homomorphism h: S⁻¹A → B such that g = h ∘ f.
 - (b) Show that the operation S^{-1} is exact.
 - (c) Show that the operation S^{-1} commutes with formation of finite sums, intersections and radicals. (5+4+5)

- (a) Let f: A → B be a ring homomorphism and let P be a prime ideal of A. Prove that P is a
 contraction of a prime ideal of B if P^{ec} = P.
 - (b) If I is an ideal of a ring A, then show that S = 1 + I is a multiplicatively closed subset of A. Further deduce that $S^{-1}I$ is contained in the Jacobson radical of $S^{-1}A$. (9+5)
- 7. (a) Define a primary ideal of a ring A. Is every primary ideal prime? Justify your answer.
 - (b) Let Q be a P-primary ideal, x an element of A. Then prove that
 - (i) If $x \in Q$ then (Q : x) = 1.
 - (ii) If $x \notin Q$ then (Q:x) is p-primary and r(Q:x) = P.
 - (iii) If $x \notin P$ then (Q:x) = Q.
 - (c) State and prove the first uniqueness theorem for primary decomposition. (2+6+6)
- 8. (a) Give an example for an A-module which satisfies d.c.c. but not a.c.c.
 - (b) Prove that a ring A is Noetherian if and only if the polynomial ring A[x] is Noetherian.

(2+12)
