D	ш	=	-	.1
		3	o	

Reg. No:		
-		

St Aloysius College (Autonomous) Mangaluru

Semester I – P.G. Examination- M.Sc. Mathematics January - 2023

ALGEBRA I

Time: 3 Hours

Max. Marks: 70

Answer any FIVE FULL questions from the following.

(14x5=70)

- 1. a) Prove that a subset H of \mathbb{Z} is a subgroup if and only if $H=a\mathbb{Z}$ for some $a\in\mathbb{Z}$.
 - b) Let H and K be subgroups of a group G then show that HK is a subgroup of G if and only if HK = KH.
 - c) Find all subgroups of the group \mathbb{Z}_{24} .

(8+4+2)

- 2. a) Prove that the group $\mathbb{Z}_m \times \mathbb{Z}_n$ is cyclic and is isomorphic to \mathbb{Z}_{mn} if and only if m and n are relatively prime.
 - b) Prove that any subgroup of index 2 is normal.
 - c) Let G be a group generated by an element a of order n then, prove that a^k is a generator of G if and only if gcd(k,n)=1.

(6+3+5)

- 3. a) If G is a finite subgroup of the group O of rigid motions of the plane which fix the origin, then show that either G is the cyclic group of order n generated by the rotation ρ_{θ} , where $\theta = 2\pi/n$ or G is Dn, the dihedral group of order 2n.
 - b) Define isometry of \mathbb{R}^2 . Prove that every isometry of \mathbb{R}^2 is a translation, a rotation or a reflection.

(7+7)

- 4. a) State and prove second Sylow theorem for a finite group.
 - b) Prove that two elements in the symmetric group S_n are conjugates if and only if they have the same cycle structure.

(8+6)

- 5. a) State and prove Cayley's theorem.
 - b) Derive the class equation for a finite group. Determine all possible class equations for a group of order 21.

(8+6)

- 6. a) If H and K are subgroups of group G, show that $[H:H\cap K] \leq [G:K]$.
 - b) Show that every group of order 15 is simple.
 - c) Find the class equation of S₃.

(5+6+3)

Contd...2

PH 561.1 Page No. 2

 a) Define an integral domain. Prove that every integral domain can be embedded in a field.

b) Prove that, an ideal M of a ring R is maximal ideal if and only if R/M is a field.

(8+6)

- 8. a) Prove that every finite integral domain is a field.
 - State and prove the correspondence theorem on ring homomorphism.
 - c) Prove that an element of the ring \mathbb{Z}_n is a divisor of zero if and only if it is not relatively prime to n.

(4+7+3)

Reg. No.

St Aloysius College (Autonomous) Mangaluru

Semester I - P.G. Examinations - M.Sc. Mathematics January 2023 LINEAR ALGEBRA-I

Time: 3 Hours

Max. Marks: 70

Answer any FIVE FULL questions from the following:

 $(14\times 5=70)$

- (a) Define elementary matrices. Show that elementary matrices are invertible and their inverses are also elementary.
 - (b) Prove that any $m \times n$ matrix can be reduced to a row-echelon form by applying finitely many elementary row operations.
 - (c) Let A be an $n \times n$ matrix with integer entries. Prove that A is invertible, and that A^{-1} has integer entries if and only if det $A = \pm 1$. (4+6+4)
- 2. (a) Prove that the following conditions are equivalent for a square matrix A
 - (i) A can be reduced to the identity matrix by applying elementary operations
 - (ii) A is a product of elementary matrices
 - (iii) A is invertible
 - (iv) the system AX = 0 has only the trivial solution.
 - (b) Prove that a square matrix is invertible if and only if its determinant is nonzero.
 - (c) Show that the inverse of a permutation matrix is its transpose.
 - (d) Write the permutation matrix associated with the permutation $p = (1 \ 4 \ 3) \in S_5$. (6+4+2+2)
- 3. (a) Define a basis for a vector space. Verify whether $\mathcal{B} = \{(5,6,3)^t, (1,0,4)^t, (3,1,6)^t\}$ is a basis of \mathbb{R}^3 over \mathbb{R} .
 - (b) Let V be a vector space over a field F. If S is a finite set of vectors in V which spans V, then show that S contains a basis of V.
 - (c) If S and L are finite subsets of a vector space V over a field F such that S spans V and L is linearly independent, then prove that $|L| \leq |S|$. Deduce that any two bases of a finite dimensional vector space have the same number of elements. (3+3+8)
- 4. (a) Let V be an n-dimensional vector space and let \mathcal{B} be an ordered basis of V. Prove that the collection of all ordered bases of V is $\{\mathcal{B}P: P \in GL_n(F)\}$.
 - (b) Determine the order of $GL_n(F_p)$, where p is a prime.
 - (c) Find a basis for the space of all solutions of the homogeneous system of equations AX = 0, where $A = \begin{bmatrix} 2 & 1 & 2 & 3 \\ 1 & 1 & 3 & 0 \end{bmatrix}$ (6+4+4)
- 5. (a) Show that the space $M_n(\mathbb{R})$ of all $n \times n$ real matrices is a direct sum of the space of all $n \times n$ real symmetric and the space of all $n \times n$ real skew-symmetric matrices.

- (b) If W_1 and W_2 are subspaces of a finite dimensional vector space over a field, then prove that $\dim W_1 + \dim W_2 = \dim(W_1 + W_2) + \dim(W_1 \cap W_2)$. (5+9)
- (a) State and prove the rank-nullity theorem for a linear transformation on a finitedimensional vector space.
 - (b) Prove that similar matrices have same eigenvalues.

(c) Diagonalize the matrix
$$\begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}$$
. (6+3+5)

- 7. (a) Let T be a linear map of the vector spaces V and W over a field F, of dimensions n and m respectively. Prove that there exist bases \mathcal{B} and \mathcal{C} of V and W respectively, such that the matrix of T with respect to \mathcal{B} and \mathcal{C} is of the form $\begin{bmatrix} I_{\tau} & 0 \\ 0 & 0 \end{bmatrix}$, where $r = \operatorname{rank} T$.
 - (b) Let $T:V\to V$ be a linear operator on a finite dimensional vector space V over a field F. Prove that the following are equivalent:
 - (i) $\ker T > 0$
 - (ii) im T < V
 - (iii) If A is the matrix of T with respect to an arbitrary basis, then $\det A = 0$.
 - (iv) 0 is an eigenvalue of T. (7+7)
- 8. (a) Prove that an $n \times n$ real matrix A is orthogonal if and only if $(AX \cdot AY) = (X \cdot Y)$ for all $X, Y \in \mathbb{R}^n$.
 - (b) Show that a rigid motion of \mathbb{R}^n is the composition of an orthogonal linear operator and a translation. (4+10)

St Aloysius College (Autonomous)

Mangaluru

Semester I - P.G. Examination - M.Sc. Mathematics

January - 2023

REAL ANALYSIS - I

Time: 3 hrs.

Max Marks: 70

Answer any <u>FIVE</u> <u>FULL</u> questions.

(14x5=70)

- 1. a) Define the notions of an upper bound and least upper bound of a subset E of an ordered set S.
 - b) State and prove the Archimedean property of \mathbb{R} .
 - State and prove the Schwarz inequality.
 - d) Let A be a countable set and let B be the set of all n-tuples of elements of A. Prove that B is countable. (2+4+4+4)
- 2. a) In a metric space prove that any neighbourhood of a point is an open set.
 - b) Let X be a metric space and $E \subseteq X$. Then prove that E is open if and only if E^{c} is closed.
 - c) Prove that a finite union of closed sets in a metric space is a closed set. Is an arbitrary union of closed sets closed? Justify your answer.
- 3. a) If $\{K_{\alpha}\}$ is a collection of compact subsets of a metric space X such that the intersection of every finite subcollection of $\{K_{\alpha}\}$ is non empty, then prove that $\cap K_{\alpha}$ is nonempty.
 - b) Define a compact set. Prove that every k cell in \mathbb{R}^k is compact. (4+10)
- 4. a) Define a Perfect Set. If P is a nonempty perfect set in \mathbb{R}^k , prove that Pis uncountable.
 - b) Define a connected set. Prove that a subset E of $\mathbb R$ is connected if and only if it is an interval.
- 5. a) If $\{s_n\}$ and $\{t_n\}$ are complex sequences, such that $\lim_{n\to\infty} s_n = s$, and $\lim_{n\to\infty} t_n = t$, prove that $\lim_{n\to\infty} s_n t_n = st$.
 - b) Prove that $\lim_{n\to\infty} \sqrt[n]{n} = 1$ and $\lim_{n\to\infty} \frac{n^{\alpha}}{(1+p)^n} = 0$ for real p>0 and real α .
 - c) Show that the set of all subsequential limits of a sequence $\{p_n\}$ in a metric space X forms a closed subset of X. (3+7+4)
- 6. a) State and prove Ratio test for convergence of a series.
 - b) For any sequence $\{c_n\}$ of positive real numbers, prove that

$$\lim_{n\to\infty}\sup{\sqrt[n]{c_n}}\leq \lim_{n\to\infty}\sup{\frac{c_{n+1}}{c_n}}\;.$$

c) Prove that 'e' is irrational.

(6+4+4)

Contd...2

- 7. a) Let X and Y be metric spaces and $f: X \to Y$ be a function. Prove that f is continuous if and only if for every sequence $\{x_n\}$ converging to x in X, the sequence $\{f(x_n)\}$ converges to f(x) in Y.
 - b) Define uniform continuity. Prove that a continuous mapping of a compact set *X* into a metric space *Y* is uniformly continuous.
 - c) Let f be a continuous real function on the interval [a,b]. If f(a) < f(b) and if c' is a number such that f(a) < c < f(b), then prove that there exists a point $x \in (a,b)$ such that f(x) = c. (4+6+4)
- 8. a) Suppose f is continuous on [a,b], f'(x) exists at some point $x \in [a,b]$, g is defined on an interval I which contains the range of f and g is differentiable at the point f(x). If h(t) = g(f(t)), $a \le t \le b$. Then prove that h is differentiable at x, and h'(x) = g'(f(x))f'(x).
 - b) State and prove Taylor's theorem.
 - c) Suppose f is defined in a neighbourhood of x, and suppose f''(x) exists. Show that $\lim_{h\to 0} \frac{f(x+h)-f(x-h)-2f(x)}{h^2} = f''(x)$. (5+6+3)

Reg. No.						
----------	--	--	--	--	--	--

St Aloysius College (Autonomous) Mangaluru

Semester I - P.G. Examinations - M.Sc. Mathematics January 2023 GRAPH THEORY

Time: 3 Hours

Max. Marks: 70

Answer any FIVE FULL questions from the following:

 $(14 \times 5 = 70)$

- 1. (a) Define the intersection number $\omega(G)$ of a graph G. Let G be a connected graph with p > 3 points. If G has no triangles, then show that $\omega(G) = q$, the number of lines of G.
 - (b) Prove that a graph is bipartite if and only if all its cycles are even.
- 2. (a) Show that the maximum number of lines among all p point graphs with no triangles is $\left[\frac{p^2}{4}\right]$.
 - (b) Prove or disprove the following for any two graphs G_1 and G_2 :
 - (i) If G_1 and G_2 are regular then so is $G_1 + G_2$.

(ii)
$$\overline{G_1 + G_2} = \overline{G_1} + \overline{G_2}$$
.

(10+4)

(7+7)

- 3. (a) If x is a line of a connected graph G prove that the following are equivalent:
 - (i) x is a bridge of G.
 - (ii) x is not on any cycle of G.
 - (iii) There exist points u and v of G such that the line x is on every u v path.
 - (iv) There exists a partition of V into subsets U and W such that for every $u \in U$ and $w \in W$, the line x is on every path joining u and w.
 - (b) Prove that every nontrivial connected graph has at least two points which are not cut points. (8+6)
- 4. (a) Prove that the following statements are equivalent for a (p, q) graph G:
 - (i) G is a tree.
 - (ii) Every two points of G are joined by a unique path.
 - (iii) G is connected and p = q + 1.
 - (iv) G is acyclic and p = q + 1.
 - (b) Define center of a graph G. Prove that every tree has a center consisting of either one point or two adjacent points. (9+5)
- 5. (a) For any graph G, show that $\kappa(G) \leq \lambda(G)$.
 - (b) Prove that there exists a system of distinct representatives for a family of sets S_1, S_2, \ldots, S_m if and only if the union of any k of these sets contain at least k elements, for all $k, 1 \le k \le m$. (5+9)

- 6. Let G be a graph having $p \ge 3$ points. If for every $n, 1 \le n \le \frac{p-1}{2}$ the number of points of degree not exceeding n is less than n and if, for odd p, the number of points of degree at most $\frac{p-1}{2}$ does not exceed $\frac{p-1}{2}$, then prove that G is Hamiltonian. (14)
- (a) Define an Eulerian and a Hamiltonian graph. Give an example of a graph which is Eulerian but not Hamiltonian.
 - (b) Prove that every planar graph G with p ≥ 4 points has at least four points of degree not exceeding 5
 - (c) Define a plane map. For a plane map with vertices, edges and faces, prove that p-q+r=2. (3+6+5)
- 8. (a) For any graph G, show that $\chi(G) \leq 1 + \max \delta(G')$ where the maximum is taken over all induced subgraph G' of G and $\delta(G')$ is the minimum degree of G'.
 - (b) Prove that every planar graph is 5-colorable. (5+9)

St Aloysius College (Autonomous) Mangaluru

Semester I – P.G. Examination –M.Sc. Mathematics January - 2023

ORDINARY DIFFERENTIAL EQUATIONS

Time: 3 hours

Max. Marks:70

Answer any FIVE FULL questions from the following:

- 1. a) Prove or disprove the following:
 - i) The functions $x_1(t), x_2(t), \dots, x_n(t)$ are linearly independent on an interval I of \mathbb{R} if $W(x_1(t_0), x_2(t_0), \dots, x_n(t_0)) \neq 0$ for some $t_0 \in I$.
 - ii) If the functions $x_1(t), x_2(t), \dots, x_n(t)$ are linearly independent on an interval I of \mathbb{R} then $W(x_1(t_0), x_2(t_0), \dots, x_n(t_0)) \neq 0$ for some $t_0 \in I$.
 - b) State and prove Abel's formula for n^{th} order linear homogeneous differential equation.
 - c) Verify if e^x , $\cos x$, $\sin x$ are linearly independent on the real line.

(6+6+2)

2. a) Let φ_1 be a solution of $L_2(x) = a_0(t)x'' + a_1(t)x' + a_2(t)x = 0$, $t \in I$ where $a_0(t) \neq 0, \forall t \in I$ and $\varphi_1(t) \neq 0, \forall t \in I$. Then show that

$$\varphi_2(t) = \varphi_1(t) \int_{t_0}^{t} \frac{1}{(\varphi_1(s))^2} \exp \left[-\int_{t_0}^{s} \frac{a_1(\xi)}{a_0(\xi)} d\xi \right] ds$$

is a solution of the above equation on I and $t_0 \in I$. Further show that $\varphi_1(t)$ and $\varphi_2(t)$ are linearly independent on I.

b) Find the general solution of $t^2x'' - 2tx' + 2x = t^3 \sin t$, $t \in (0, \infty)$ (7+7)

3. a) Solve the IVP

$$x''' + x'' = 0, x(0) = 1, x'(0) = 0, x''(0) = 1$$

b) Solve
$$x^{(4)} + 4x = 2\cos t + 1 + t + t^2 + e^{5t}$$
. (5+9)

- 4. a) State and prove the Rodrigues formula for Legendre polynomials.
 - b) State and prove the orthogonal property of the Legendre polynomials. (6+8)

- 5. a) Derive Bessel's function of the first kind.
 - b) With usual notations for Bessel functions show that:

i)
$$\frac{d}{dt}(t^p J_p(t)) = t^p J_{p-1}(t)$$

ii) $\frac{d}{dt}(t^{-p} J_p(t)) = -t^{-p} J_{p+1}(t)$. (8+6)

a) Solve the given system of linear equations

$$x' = 4x - y, \qquad y' = 2x + y$$

- b) Prove that the set of all solutions of the system X'(t) = A(t)X, $t \in I$ forms an n-dimensional vector space over the field of complex numbers.
- c) Let Φ be a fundamental matrix of the system X'(t) = A(t)X, $t \in I$ and let C be a constant, non-singular matrix. Then show that ΦC is also a fundamental matrix of the given system. Further prove that every fundamental matrix of the given system is of this type for some constant, non-singular matrix C.

(3+6+5)

- 7. a) Show that $\Phi(t) = \begin{bmatrix} e^{3t} & 2te^{3t} \\ 0 & e^{3t} \end{bmatrix}$ is a fundamental matrix of the system X'(t) = A(t)X where $A(t) = \begin{bmatrix} 3 & 2 \\ 0 & 3 \end{bmatrix}$. Further find the solution of X'(t) = A(t)X(t) + B(t) satisfying the condition $X(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, where $B(t) = \begin{bmatrix} e^t \\ e^{-t} \end{bmatrix}$
 - b) Let A(t) be an $n \times n$ continuous matrix on I and be periodic with period ω . If $\Phi(t)$ is a fundamental matrix for the system x'(t) = A(t)x, then show that $\Phi(t+\omega)$ is also a fundamental matrix. Justify that for any such $\Phi(t)$, there exists a periodic non-singular P(t) with period ω and a constant matrix R such that $\Phi(t) = P(t) e^{tR}$.
- 8. State and prove Picard's theorem. (14)
