PH 561. 4

St. Aloysius College (Autonomous), Semester IV - P. G. Examination - M. Sc.	Reg. No.
Semester IV - P. G. Examitonomous),	Mangaluru
Measure Theory and Inte	Mathematics
and Inte	grtion

Time: 3 Hours

Answer any FIVE full questions.

Max. Marks: 70

- 1. (a) If $A \subseteq \mathbb{R}$, and $k \in \mathbb{R}$, show that $m^*(kA) = |k| m^*(A)$, where $kA = \{kx : x \in A\}$.
 - (b) Show that Lebesgue outer measure is countably subadditive.
 - (c) Show that for any $A \subseteq \mathbb{R}$ with $m^*(A) < +\infty$, and $\epsilon > 0$, there is an open set O containing (5+5+4)
- 2. (a) Prove or disprove: If $A \subseteq \mathbb{R}$ with $m^*(A) = 0$, then A is countable.
 - (b) Show that every interval is Lebesgue measurable, and hence prove that every Borel set is Lebesgue measurable. (5+9)
- 3. (a) Define a Lebesgue measurable function. If f is a Lebesgue measurable function and f=ga. e. on E, then show that g is Lebesgue measurable.
 - (b) Let E be a Lebesgue mearurable subset of \mathbb{R} , and $c \in \mathbb{R}$. If $f,g:E \to \mathbb{R}$ are Lebesgue measurable functions, show that cf, f+g and fg are Lebesgue measurable.
 - (c) Prove that a real valued monotonically decreasing function on a Lebesgue measurable set is Lebesgue measurble. (4+6+4)
- 4. (a) Define the Lebesgue integral of a non-negative Lebesgue measurable function f. Prove that $\int f dx = 0$ if and only if f = 0 a. e. on E.
 - (b) If a bounded function $f:[a, b] \to \mathbb{R}$ is Riemann integrable, then prove that f is Lebesgue integrable. Is the converse true? Justify. (6+8)
- 5. (a) State and prove Fatou's Lemma.
 - (b) Let $\{f_n\}$ be a monotonically increasing sequence of non-negative Lebesgue measurable functions converging to a function f. Prove that $\int f dx = \lim \int f_n dx$. (10+4)

contd...2

;

- 6. (a) Define a convex function. Prove that a convex function on an open interval is continuous.
 - (b) State and prove Jensen's inequality. (7+7)
- 7. Show that L^p spaces, $1 \le p \le \infty$, are complete. (14)
- 8. (a) Define the notions of
 - (i) a measurable space,
 - (ii) a signed measure on a measurable space.
 - (ii) a signed measure (iii) a signed measure (b) Show that if $\phi(E) = \int_E f \ d\mu$, where $\int f \ d\mu$ is defined, then ϕ is a signed measure.
 - (b) Show that if ψ(D) JE.
 (c) Define a positive set with respect to a signed measure ν. Prove that a countable union of Define a positive set with respect to a signed measure ν is a positive set. (3+4+7)

ST. ALOYSH'S COLLEGE PG Library MANGALORE-575 003

PH 562 4

Time: 3 Hours

Max. Marks: 70

Answer any FIVE FULL questions from the following:

 $(14 \times 5 = 70)$

- 1. (a) Define a simply connected region. Give two examples.
 - (a) Prove that a region Ω is simply connected if and only if n(γ, a) = 0 for all cycles γ in Ω and all points a which do not belong to Ω.
- 2. (a) State and prove the Residue theorem.
 - (b) Find a homology basis for the annulus defined by $r_1 < |z| < r_2$.

(b) Find a notion (b) Find a notion (c) Evaluate
$$\int_C \frac{e^{2z}}{(z+1)^4} dz$$
, where C is the circle $|z| = 2$. (8+4+2)

- 3. (a) State and prove the Argument Principle.
 - (b) State and prove the Rouche's theorem.

(b) State and
$$\int_C \frac{3z^2 + z - 1}{(z^2 - 1)(z - 3)} dz$$
, where $C : |z| = 2$.
(d) Evaluate $\int_C \frac{1}{(z - 1)^2(z - 3)} dz$, where $C : |z| = 2$. (5+5+2+2)

- 4. (a) If u_1 and u_2 are harmonic in a region Ω , then prove that $\int_{\gamma} u_1^* du_2 u_2^* du_1 = 0$ for every cycle γ which is homologous to zero in Ω .
 - (b) State and prove the mean value property for harmonic functions. (7+7)
- 5. (a) Prove that a non-constant harmonic function defined in a region Ω has neither a maximum nor a minimum in Ω .
 - (b) Let Ω⁺ denotes the part in the upper half plane of a symmetric region Ω, and let σ be the part of real axis in Ω. Suppose that v(x) is real and continuous in Ω⁺∪σ, harmonic in Ω⁺ and zero on σ. Prove that v has a harmonic extension to Ω which satisfies the symmetric relation v(z̄) = -v(z).

contd...2

PH 562.4

6. (a) Suppose that $f_n(z)$ is analytic in the region Ω_n , and that the sequence $\{f_n(z)\}$ converges to Suppose that $f_n(z)$ is analytic in α uniformly on that the sequence $\{f_n(z)\}$ converges to a limit function f(z) in a region Ω uniformly on α every compact subset of Ω . Prove that f(z)is analytic in Ω .

(b) State and prove the Hurwitz theorem. (7+7)

- (b) State and prove the z (7) $= e^z$ uniformly on every compact subset of the complex plane.
 - (a) Show that $\lim_{n\to\infty} \left(1+\frac{1}{n}\right) = 0$ Compact subset of the complex plane. (b) If f(z) is analytic in a region Ω containing a, then show that the representation $f(z) = f(a) + \frac{(z-a)}{1!} f'(a) + \cdots + \frac{(z-a)^n}{n!} f^{(n)}(a) + \cdots$ is valid in the largest open disc centered at a and contained in Ω .
- 8. (a) Show that $\frac{\pi^2}{\sin^2 \pi z} = \sum_{n=-\infty}^{\infty} \frac{1}{(z-n)^2}$.
 - (b) Prove that f(z) is an entire function without zeroes if and only if $f(z) = e^{g(z)}$, where g(z) is an entire function.
 - (c) Prove that a necessary and sufficient condition for the absolute convergence of the product $\prod_{n=1}^{\infty} (1+a_n)$ is the convergence of the series $\sum_{n=1}^{\infty} |a_n|$. (6+3+5)

ST. ALOYSIUS COLLEGE PG Liberry MANGALORE-5/5 003

ps 564.4

St Aloysius College Reg. No.

Mange (Autonomous) Mangaluru

Semester IV - P.G. Examination - M.Sc. Mathematics

FUNCTIONAL 2022

Max Marks

Time: 3 hrs.

Max Marks: 70

Answer any FIVE FULL questions from the following:

- State and prove the Cantor's intersection theorem. Show that the theorem fails if the State and prove and closed sets in the hypothesis are replaced by open sets.
 - b) Prove that every complete metric space is of second category. (7+7)
- 2. a) State and prove the Holder's inequality for n tuples of scalars and deduce the
 - b) Let p be a real number such that $p \ge 1$. Prove that the linear space l_p^n of all Let p be a $n-tuples \ x = (x_1, x_2, ..., x_n)$ of scalars forms a Banach space with respect to the norm given by $||x||_p = (\sum_{i=1}^n |x_i|^p)_p^{\frac{1}{p}}$ (8+6)
- 3. a) Let N be a finite dimensional normed linear space with dimension n > 0 and let $\{e_1, e_2, ..., e_n\}$ be a basis of N. Show that the map $T: N \to l_1^n$ given by $T(x) = (x_1, x_2, \dots, x_n)$, whenever $x = x_1e_1 + x_2e_2 + \dots + x_ne_n$, is continuous.
 - b) Let L be a linear space made into a normed linear space by $\|.\|$ and $\|.\|'$. Show that these two norms are equivalent if and only if there exist positive reals K_1 and K_2 such that $K_1 ||x|| \le ||x||' \le K_2 ||x||$, for all $x \in L$.
 - 4. a) Let N be a nonzero normed linear space. Prove that N is a Banach space if and only if $\{x \in \mathbb{N} : ||x|| = 1\}$ is complete as a subspace of \mathbb{N} .
 - b) Define the conjugate space N^* of a normed linear space N. Prove that there is an isometric isomorphism of N into N^{**} . (7+7)
 - (14)State and prove the open mapping theorem.
 - 6. a) State and prove the parallelogram law in a Hilbert space H.
 - b) Define Hilbert space. Prove that a complex Banach space B is a Hilbert space if and only if the parallelogram law holds in B. (3+11)
 - 7. a) If M is a proper closed linear subspace of a Hilbert space H, then prove that there exists a nonzero vector z_0 in H such that $z_0 \perp M$.
 - b) If M and N are closed linear subspace of a Hilbert space H such that $M \perp N$, then prove that the linear subspace M + N is also closed.
 - c) If M is a closed linear subspace of a Hilbert space H, then prove that $H = M \oplus M^{\perp}$. (5+6+3)Contd...2

8. a) For an orthonormal set $\{e_1, e_2, \dots, e_n\}$ in a Hilbert space H and $x \in H$ show that i) $\sum_{i=1}^{n} |\langle x, e_i \rangle|^2 \le ||x||^2$ for $e_{ach} j$, $1 \le j \le n$.

- b) Let H be a Hilbert space, prove that $\langle Tx, y \rangle = \langle x, T^*y \rangle$ for all $x, y \in H$.
- c) If T is an operator on a Hilbert space H such that $\langle Tx, x \rangle = 0$ for all $x \in H$, then show that T = 0. (5+6+3)

MANGALORE-575 003

Time: 3 hrs.

Max Marks: 70

- Show that the general solution of the Lagrange's equation in two independent variables Show that u(x, y) for a single unknown function u(x, y), $P(x, y, u) \frac{\partial u}{\partial x} + Q(x, y, u) \frac{\partial u}{\partial y} = R(x, y, u)$ is $F(\varphi(x,y,u),\psi(x,y,u)) = 0$ where F_{is} an arbitrary function and $F(\varphi(x,y,u),\psi(x,y,u)) = c$, are f(x,y,u) = c, are f(x,y,u) = c. $F(\varphi(x,y,u), \tau) = c_1, \quad \psi(x,y,u) = c_2$ are $t_{\text{Wo independent first integral curves of the}}^{18}$ and $t_{\text{Wo independent first integral curves of the}}^{18}$ $\frac{\varphi(x, y, u)}{\text{equation}} \frac{dx}{P(x, y, u)} = \frac{dy}{Q(x, y, u)} = \frac{du}{R(x, y, u)}$
 - b) Find the general integral of $(2xy-1)p+(z-2x^2)q=2(x-yz)$. the quasi-linear partial differential equation (7+7)
- 2. a) Solve $(y^2 + yz + z^2)dx + (z^2 + zx + x^2)dy + (x^2 + xy + y^2)dz = 0$ b) Test for integrability of $z(y^2 + z)dx + z(z + x^2)dy - xy(x + y)dz = 0$ and find its primitive. (7+7)
- 3. a) Find the orthogonal trajectories on the cone $x^2 + y^2 = z^2 \tan^2 \alpha$ of the curves in which it is cut by the system of planes z = c.
 - b) Obtain the partial differential equation by eliminating the arbitrary function f from the equation $u = (x - y) f(x^3 + y^3)$
 - c) Find the complete integral of the partial differential equation $p^2y(1+x^2)=qx^2$. (7+3+4)
- 4. a) When are two first order partial differential equations f(x, y, u, p, q) = 0 and g(x, y, u, p, q) = 0 said to be compatible. Derive a necessary condition for their compatibility.
 - b) Find the characteristics of the equation 2pq u = 0 and find the integral surface satisfying $u(0,y) = \frac{y^2}{2}.$ (7+7)
- 5. a) Find the complete integral of the partial differential equation $(p^2 + q^2)x = pz$ and deduce the solution which passes through the curves x = 0 and $z^2 = 4y$.
 - b) Find the surface which intersects surfaces of the system z(x+y) = c(3z+1) orthogonally and which passes through the circle $x^2 + y^2 = 1$, z = 1. (7+7)
- 6. a) Solve the equation $(D^2 + 2DD' + D'^2 2D 2D')u = \sin(x + 2y)$ b) Solve the equation $(D^2 + 3DD' + 2D'^2)u = x + y$ (7+7)
- 7. a) Classify and reduce the equation $u_{xx} + x^2 u_{yy} = 0$ to a canonical form and solve it. b) Find the characteristic curves of the partial differential equation $3u_{xx} + 10u_{xy} + 3u_{yy} = 0$ (8+6)

8. a) Obtain the solution of the wave equation u_{t_1} Page No. 2 Obtain the solution of the way boundary conditions $u(x,0) = x - x^2$, $\frac{\partial u}{\partial t} (x,0) = \sin \pi x$ $0 \le x \le 1$ and

u(0,t) = 0, u(1,t) = 0, $t \ge 0$.

- u(0,t) = 0, u(1,t) = 0, $t \ge 0$ b) Obtain the solution of the one dimensional diffusion equation in the region $0 \le x \le \pi$, $t \ge 0$ subject to (i) T remains finite as $l \to \infty$,

 - (ii) T = 0 if x = 0 and $x = \pi$, $\forall t$ and

(ii)
$$T = 0$$
 if $x = 0$ and $x = \pi$,
(iii) $T = 0$ if $x = 0$ and $x = \pi$,
(iii) At $t = 0$ $T =\begin{cases} x & 0 \le x \le \frac{\pi}{2} \\ \pi - x & \frac{\pi}{2} \le x \le \pi \end{cases}$

***** (7+7)

ST. ALOYSHUS COLLEGE MANGALORE-575 003

PS 566.4

Reg.	No.	T
		1

St Aloysius College (Autonomous) Mangalore Semester IV - P. G. Examination - M. Sc. Mathematics July 2022 Algebraic Number Theory

Time: 3 Hours

Note: Answer any FIVE full questions.

Max. Marks: 70

- 1. (a) Show that an integer n is divisible by 9 if and only if sum of its digits in its decimal expansion is divisible by 9.
 - (b) Solve the congruence $6x \equiv 12 \pmod{9}$.
 - (c) Define Euler totient function $\varphi(n)$. Let a, m, n are positive integers with (a, m) = 1. Prove that $a^{\varphi(m)} = 1 \pmod{m}$. Further if p is prime number, then prove that $1^p + 2^p + \dots + (p-1)^p \equiv 0 \pmod{p}$.

(3+4+7)

- 2. (a) Let p be an odd prime and a be any integer, show that $\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \pmod{p}$.
 - (b) For an odd prime p show that $\left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}}$.
 - (c) State and prove Wilson's Theorem. (6+4+4)
- 3. (a) State and prove Gauss lemma.
 - (b) Find all prime p such that $x^2 \equiv 13 \pmod{p}$ has a solution. (10+4)
- 4. (a) If $\alpha \in \mathbb{R}$ is an algebraic number of degree n > 1, then prove that there exists a constant $c(\alpha) > 0$, such that for any rational number $\frac{p}{q}$ with $\gcd(p,q) = 1$, q > 0, thte following inequality holds.

 $\left|\alpha - \frac{p}{q}\right| \ge \frac{c(\alpha)}{q^n}.$

- (b) If $\alpha \in \mathbb{C}$ and there is a finitely generated non-zero \mathbb{Z} -submodule M of \mathbb{C} such that $\alpha M \subseteq M$, then prove that α is an algebraic integer.
- (c) If K is an algebraic number field of degree n, then prove that there exists exactly n distinct \mathbb{Q} -embeddings of K into \mathbb{C} .

contd...2

PS 566.4

Page NO. 2

- 5. (a) Let K be an algebraic number field. If $\alpha \in K$ is an algebraic integer, then prove that $Tr_{K/\mathbb{Q}}(\alpha)$ and $Nr_{K/\mathbb{Q}}(\alpha)$ are integers.
 - (b) Let K be an algebraic number field and O_K be the ring of integers of K. Then prove that
 - i) $Nr_{K/\mathbb{Q}}(\alpha) = \pm 1$ if and only if α is a unit in \mathcal{O}_K .
 - ii) If α, β ∈ O_K are associates, then Nr_{K/Q}(α) = ±Nr_{K/Q}(β).
 - (c) Prove that every algebraic number field has an integral basis (3+4+7)
- 6. (a) If d is a square free integer, then find an integral basis and discriminant of $K = \mathbb{Q}(\sqrt{d})$
 - (b) If $\zeta = e^{\frac{2\pi i}{5}}$ and $K = \mathbb{Q}(\zeta)$, then find $Tr_{K/\mathbb{Q}}(\zeta + \zeta^2 + \zeta^3)$. (11+3)
- 7. (a) Let d be square free integer less than -11 and $d \equiv 1 \pmod{4}$. Then prove that, the ring of integers \mathcal{O}_K of $K = \mathbb{Q}(\sqrt{d})$ is not a Euclidean domain.
 - (b) Prove or disprove the following:
 - i) Every Unique factorization domain is integrally closed.
 - ii) Every principal ideal domain is a Dedekind domain.
 - iii) Every Dedekind domain is a principal ideal domain.

(4+10)

8. Let \mathcal{O}_K be ring of integers of an algebraic number field K. Prove that every non-zero proper ideal of \mathcal{O}_K can be uniquely written as product of finitely many non-zero prime ideals of \mathcal{O}_K . (14)

PG LIBERTY
MANGALORE - 575 903