Reg. No:

ST. ALOYSIUS COLLEGE

St Aloysius College (Autonomous)

Semester IV - P.G. Examination - M. Sc. Mathematics NGALORE - \$15 091

September - 2020

MEASURE THEORY AND INTEGRATION

Time: 3 Hours

Max. Marks: 70

Answer any FIVE FULL questions from the following

(14x5=70)

- Define the Lebesgue outer measure m*(A) of any subset A of \mathbb{R} . Show that m' is monotone and translation invariant.
 - Prove that outer measure of an interval equals its length.

(5+9)

- For any sequence of sets $\{E_i\}$, show that $m^*\left(\bigcup_{i=1}^{\infty} E_i\right) \leq \sum_{i=1}^{\infty} m^*(E_i)$. Hence show that every countable set has measure zero
 - b) Let $\{E_i\}$ be a sequence of measurable sets. Prove the following:
 - i) if $E_1 \subseteq E_2 \subseteq ...$, then $m(\lim E_i) = \lim m(E_i)$
 - ii) if $E_1 \supseteq E_2 \supseteq ...$, and $m(E_1) < \infty$, then $m(\lim E_n) = \lim m(E_n)$.

(4+10)

- Let c be any real number and let f and g be real valued measurable functions defined on the same measurable set E. Prove that cf, f+g, fgare measureable.
 - If $\{f_n\}$ is a sequence of measurable functions defined on the same measurable set, then show that $\sup f_n$ is measurable.
 - If f is a measurable function, then show that |f| is measurable. Is the (6+4+4)converse true? Justify?
- Show that if f is a non-negative measurable function, then show that 4. a) f = 0 a.e. if and only if, $\int f dx = 0$.
 - State and prove Fatou's lemma.

(4+10)

- Let $\{f_n\}$ be a sequence of integrable functions such that $\sum \int |f_n| dx < \infty$. 5. a) Prove that the series $\sum_{n=1}^{\infty} f_n(x)$ converges a.e., its sum f(x) is integrable and $\int f dx = \sum_{n=1}^{\infty} \int f_n dx$.
 - If f is Riemann integrable and bounded over the finite interval [a,b] then prove that f is integrable and $R \int_{0}^{b} f dx = \int_{0}^{b} f dx$. (6+8)
- Let f and g be integrable functions. Prove the following: i) a f is integrable and $\int a f dx = a \int f dx$, $a \in \mathbb{R}$.

ii) f + g is integrable and $\int (f + g dx) = \int f dx + \int g dx$.

iii) If $f \le g$ a.e. then $\int f dx \le \int g dx$.

iv) If A and B are disjoint measurable sets, then $\int_A f dx + \int_B f dx = \int_{A \cup B} f dx$.

If f is measurable, $m(E) < +\infty$ and $A \le f \le B$ on E, then prove that (10+4) $A m(E) \le \int_E f dx \le B m(E)$ on E.

State and prove Jensen's inequality. When does equality occurs? Discuss. 7. a)

Prove Minkowski's inequality. b)

Define signed measure on a measure space. 8. a)

(2+12)

State and prove Jordan decomposition theorem. b)

MANGALORE STA

PH 562.4

Reg. No:

St. Aloysius College (Autonomous)

Mangalore

Semester IV - P.G. Examination - M. Sc. Mathematics
September - 2020

COMPLEX ANALYSIS - II

Time: 3 Hours

Max.Marks:70

Answer any <u>FIVE</u> FULL questions from the following:

(14×5=70)

- 1. a) Prove that the region obtained from a simply connected region by removing m points has the connectivity m+1.
 - b) Prove that a region Ω is simply connected if and only if $\eta(\gamma, a) = 0$ for all cycles γ' in Ω and all points α' which do not belong to Ω . (2+12)
- 2. a) Find a homology basis for the annulus defined by $r_1 < |z| < r_2$.
 - b) State and prove the Residue theorem.
 - c) Evaluate $\int_{C} \frac{\sin z}{\left(z \frac{\pi}{4}\right)^3} dz$, where C is the circle $\left|z \frac{\pi}{4}\right| = \frac{1}{2}$. (4+8+2)
- 3. a) State and prove the Rouche's theorem.
 - b) Evaluate $\int_{0}^{\pi} \frac{1 + 2\cos\theta}{5 + 4\cos\theta} d\theta$
 - c) Evaluate $\int_{0}^{\infty} \frac{dx}{(1+x^2)^2}$. (5+5+4)
- 4. a) State and prove the mean value property for harmonic functions.
 - b) Let u be a bounded harmonic function in $0 < |z| < \rho$. Show that the origin is a removable singularity in the sense that u can be extended to a harmonic function in $|z| < \rho$, when u(0) is properly defined.
 - c) Suppose that f(z) is analytic in $|z| \le 1$ and $f(z) \in \mathbb{R}$ if |z| = 1. Show that f(z) is a constant function. (7+5+2)
- 5. State and prove the Poisson's formula. (14)
- 6. a) Suppose that $f_n(z)$ is analytic in the region Ω_n , and that the sequence $\{f_n(z)\}$ converges to a limit function f(z) in a region Ω uniformly on every compact subset of Ω , then prove that f(z) is analytic in Ω .
 - b) State and prove the Hurwitz theorem.

(7+7)

Contd...2

- 7. a) If f(z) is analytic in a region Ω containing a, then show that the representation $f(z) = f(a) + \frac{f'(a)}{1!}(z-a) + \dots + \frac{f^{(n)}(a)}{n!}(z-a)^n + \dots$ is valid in the largest open disk of center a contained in Ω .
 - b) Find the Taylor's series for $f(z) = \frac{1}{z}$ about z = 1.
 - c) Expand $f(z) = \frac{z}{(z-1)(2-z)}$ in a Laurent's series valid for |z-1| > 1. (8+2+4)
- 8. a) Show that $\frac{\pi^2}{\sin^2 \pi z} = \sum_{n=-\infty}^{\infty} \frac{1}{(z-n)^2}$.
 - b) Prove that the necessary and sufficient condition for the absolute convergence of the product $\prod_{n=1}^{\infty} (1+a_n)$ is the convergence of the series $\sum_{n=1}^{\infty} |a_n|$.
 - c) Prove that f(z) is an entire function without zeros if and only if $f(z) = e^{g(z)}$, where g(z) is an entire function. (6+5+3)

PS 564.4

Reg. No: St. Aloysius College (Autonomous)

Mangaluru

Semester IV- P.G. Examination - M.Sc. Mathematics September - 2020

FUNCTIONAL ANALYSIS

Time: 3 Hours

Max.Marks:70

Answer any FIVE Full questions.

(14X5=70)

- 1. a) Let X be a complete metric space and let $\{F_n\}$ be a decreasing sequence of non-empty closed subsets of X such that $d(F_n) \rightarrow 0$. Then prove that $\bigcap_{n=1}^{\infty} F_n$ contains exactly one point. Show that $\bigcap_{n=1}^{\infty} F_n$ may be empty if each F_n in the hypothesis is replaced by a 'nonempty open set'.
 - b) State and prove Baire's category theorem.

(8+6)

- Let M be a closed linear subspace of a normed linear space N. Then prove 2. that the quotient space $\sqrt[N]{_M}$ forms a normed linear space w.r.t the norm given by $||x+M|| = \inf\{||x+M||: m \in M\}$. Further, show that if N is a Banach (14)space, then so is N_M .
- 3 a) Let N, N' normed linear spaces and T be a linear transformation of N into N^\prime . Then prove that the following conditions on T are all equivalent to one another.
 - T is continuous i.
 - T is continuous at the origin.
 - There exists a real number $K \ge 0$ with the property that iii. $||T(x)|| \le K ||x||$, for every $x \in N$.
 - If $S = \{x \in \mathbb{N} : ||x|| \le 1\}$ is the closed unit sphere in \mathbb{N} , then its image iv. T(S) is a bounded set in N'.
 - b) Let N be a finite dimensional normed linear space with dimension n>o and let $(v_1, v_2, ..., v_n)$ be a basis for N. If $T: N \to l^n$ is given by $T(x) = (\alpha_1, \alpha_2, ..., \alpha_n)$, whenever $x = \alpha_1 v_1 + \cdots + \alpha_n v_n$, then show that T is continuous.

(7+7)

- 4. a) Prove that every closed and bounded subset of a finite dimensional normed linear space is compact.
 - b) If N is normed linear space prove that there exists an isometric isomorphism of N into $N^{"}$.
 - c) If N is a normed linear space and x_0 is a nonzero vector in N, then show that there exists a functional f_0 in N^* such that $f_0(x_0) = ||x_0||$ and $||f_0|| = 1$.

(4+7+3)

Contd...2

Page . No: 2

State and prove the open mapping theorem.

(14)

- 6. a) Show that the parallelogram law is not true in $l_1^n (n > 1)$.
 - b) If M is a proper closed linear subspace of a Hilbert space H, then prove that there exists a nonzero vector z_0 in H such that $z_0 \perp M$.
 - c) If M is a proper closed linear subspace of a Hilbert space H, then prove that $H = M \oplus M^{\perp}$. (2+5+7)
- 7. a) Let H be a Hilbert space and let f be an arbitrary functional in H^{\bullet} . Then prove that there exists a unique vector y in H, such that $f(x) = \langle x, y \rangle$, for every x in H.
 - b) If T is an operator on a Hilbert space H such that $\langle Tx, x \rangle = 0$ for all $x \in H$, then show that T = 0.
 - c) If T is an operator on a Hilbert space H then show that the following are equivalent:
 - i) $T^*T = I$
 - ii) $\langle Tx, Ty \rangle = \langle x, y \rangle$, for all $x, y \in H$
 - iii) ||Tx|| = ||x|| for all $x \in H$.

(7+3+4)

State and prove that spectral theorem for a finite dimensional Hilbert space.
 (14)

PS 565.4

Reg. No. :

St Aloysius College (Autonomous)

Mangaluru Semester IV - P.G. Examination - M.Sc. MATHEMATICS September - 2020

PARTIAL DIFFERENTIAL EQUATIONS

Time: 3 Hours Marks: 70

Answer any <u>FIVE FULL</u> questions from the following: (14x5=70)

- 1.a) Show that the general solution of the linear partial differential equation $P(x,y,z)z_x + Q(x,y,z)z_y = R(x,y,z)$ is $F(\phi(x,y,z),\psi(x,y,z)=0$, where F is an arbitrary function and $\phi(x,y,z)=C_1$ and $\psi(x,y,z)=C_2$ form a solution of the equations $\frac{dx}{R}=\frac{dy}{Q}=\frac{dz}{R}$.
 - b) Verify that the equation $(y^2 + yz)dx + (xz + z^2)dy + (y^2 xy)dz = 0$ is integrable and find its primitive.
 - c) Solve: $z(xz_x yz_y) = y^2 x^2$. (4+6+4)
- 2.a) Find the orthogonal trajectories on the surface $x^2 + y^2 + 2fyz + d = 0$ of its curves of intersection with planes parallel to the x y plane.
 - b) Prove that a pfaffian differential equation Pdx + Qdy + Rdz = 0 is integnable if and only if X. curl(X) = 0, where X = (P, Q, R). (6+8)
- 3.a) Find the integnal surface of the linear partial differential equation $x(y^2+z)z_x-y(x^2+z)z_y=(x^2-y^2)z$ which contains the straight line x+y=0, z=1.
 - b) Find the general equation of surfaces orthogonal to the family given by $x(x^2+y^2+z^2)=C_1y^2$ showing that one such orthogonal set consists of the family of spheres given by $x^2+y^2+z^2=C_2z$. (7+7)
- 4.a) Show that the equations $xz_x yz_y = x$ and $x^2z_x + z_y = xz$ are compatible and find their solution.
 - b) Find the characteristics of the equation $z_x z_y = z$ and determine the integral surface which passes through the parabola x = 0, $y^2 = z$.

(7+7)

5.a) Find a complete integral of the partial differential equation $(p^2 + q^2)x = pz$ and deduce the solution which passes through the curve x = 0, $z^2 = 4y$.

b) Solve:
$$x^2 \frac{\partial^2 z}{\partial x^2} - y^2 \frac{\partial^2 z}{\partial y^2} + x \frac{\partial z}{\partial x} - y \frac{\partial z}{\partial y} = \log x$$
 (8+6)

PS 565.4

6.a) Reduce the following equation to a connonical form and hence solve it:

(a) Reduce the variable
$$yz_{xx} + (x+y)z_{xy} + xz_{yy} = 0.$$

b) Solve $(D^2 + 2DD' + D'^2 - 2D - 2D')z = \sin(x+2y)$ (8+6)

7.a) Solve the Dirichlet problem for a rectangle: $z_{xx}+z_{yy}=0,\ 0\leq x\leq a,\ 0\leq y\leq b,$ subject to the BC's

LANGALORE AP

z(x,b) = z(a,y) = 0, z(0,y) = 0, z(x,0) = f(x).

b) Obtain the D'Alembert's solution of the initial value problem of Cauchy type described as $Z_{tt} - C^2 Z_{xx} = 0$, $-\infty < x < \infty$, t > 0

ICs z(x,0) = f(x), $Z_t(x,0) = g(x)$, where f and g are twice (8+6)continuously differentiable functions on IR.

- 8.a) A uniform rod of length L whose surface is thermally insulated initially at temperature $\theta=\theta_0$. At time t=0, one end is suddenly cooled to $\theta=0$ and subsequently maintained at this temperature, the other end remains thermally insulated. Find the temperature distribution $\theta(x,t)$.
 - b) A stretched string of finite length L is held fixed at its ends and is subjected to an initial displacement $u(x,0)=u_0\sin\left(\frac{\pi x}{L}\right)$. The string is released from this position with zero initial velocity. Find the resultant time dependent motion (7+7)of the string.

PS 566.4

Reg. No:

St Aloysius College (Autonomous) Mangaluru

Semester IV - P.G. Examination - M. Sc. Mathematics

September - 2020

ALGEBRAIC NUMBER THEORY

Time: 3 Hours

Max. Marks: 70

Answer any <u>FIVE FULL</u> questions from the following (14x5=70)

- 1. a) Define Euler's totient function φ . Show that it is multiplicative.
 - b) Prove or disprove: If (m, n) = 1, then $(\varphi(m), \varphi(n)) = 1$.
 - c) If (a, m) = 1, then show that $a^{\varphi(m)} \equiv 1 \pmod{m}$. Determine the last two digits of 3^{2020} .

(6+2+6)

- 2. a) Let 'p' be a prime and $f(x) = c_0 + c_1 x + \dots + c_n x^n$ be a polynomial with integer coefficients, such that $c_n \not\equiv 0 \pmod{p}$. Then prove that the polynomial congruence $f(x) \equiv 0 \pmod{p}$ has at most n solutions.
 - b) State and prove Wilson's theorem.
 - c) If p is an odd prime, then show that

$$1^2 \cdot 3^2 \cdot 5^2 \dots (p-2)^2 \equiv (-1)^{\frac{p+1}{2}} \pmod{p}$$
.

(5+5+4)

- 3. a) State and prove Gauss Lemma.
 - b) If p and q are distinct odd primes, then prove that

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{(p-1)(q-1)}{4}}$$

(7+7)

- 4. a) Prove or disprove: set of all algebraic numbers is uncountable.
 - b) If α is a real algebraic number of degree n>1, then show that there exists a positive constant $c(\alpha)$ such that for any rational number p/q

with
$$(p,q)=1, q>0$$
, the inequality $\left|\alpha-\frac{p}{q}\right|>\frac{c(\alpha)}{q^n}$ holds.

c) Show that $\sum_{n=0}^{\infty} \frac{1}{10^{n!}}$ is transcendental.

(4+5+5)

Contd...2

- 5. a) Let K be an algebraic number field and $[K : \mathbb{Q}] = n$. If $\alpha \in K$ and $\sigma_1, \sigma_2, ... \sigma_n$ are the distinct \mathbb{Q} -isomorphisms of K into \mathbb{C} , then prove that
 - i) $Tr_k(\alpha) = \sigma_1(\alpha) + \sigma_2(\alpha) + \dots + \sigma_n(\alpha)$
 - ii) $N_k(\alpha) = \sigma_1(\alpha) \, \sigma_2(\alpha) \dots \sigma_n(\alpha)$

Further if $\alpha \in \mathcal{O}_k$, then show that $Tr_k(\alpha)$ and $N_k(\alpha)$ are integers.

b) Prove that every algebraic number field has an integral basis.

(7+7)

- 6. a) If $K = \mathbb{Q}(\sqrt{d})$, where d is a square-free integer show that $\mathcal{O}_K = \begin{cases} \mathbb{Z} + \mathbb{Z}\sqrt{d}, & \text{if } d \equiv 2 \text{ or } 3 \pmod{4} \\ \mathbb{Z} + \mathbb{Z}\left(\frac{1+\sqrt{d}}{2}\right), & \text{if } d \equiv 1 \pmod{4} \end{cases}$
 - b) Solve $y^2 + 2 = x^3$, for $x, y \in \mathbb{Z}$.

(8+6)

- 7. a) Let K be an algebraic number field. If I,J are non-zero ideals of \mathcal{O}_K with $I \subsetneq J$, then show that N(I) > N(J).
 - b) Define a Dedekind domain. Prove that \mathcal{O}_K is a Dedekind domain.

(4+10)

- 8. a) If \mathscr{D} is a prime ideal of \mathscr{O}_K , then prove that \mathscr{D}^{-1} is a fractional ideal and $\mathscr{D}\mathscr{D}^{-1} = \mathscr{O}_K$.
 - b) Prove that every ideal in \mathcal{O}_K can be written as product of prime ideals uniquely.

(7+7)
