аН	5	6	1	•	4
all	5	v	-		

	Т
Reg. No.:	

St Aloysius College (Autonomous)

Mangaluru

Semester IV - P.G. Examination - M.Sc. MATHEMATICS

APRIL - 2019

MEASURE THEORY AND INTEGRATION

Time: 3 Hours

Max. Marks: 70

Answer any FIVE FULL questions from the following:

(5×14=70)

- Define the Lebesgue outer measure of a subset of \mathbb{R} . Prove that Lebesgue outer measure is countably subadditive.
 - b) Show that, for any set A and any $\epsilon > 0$, there is an open set O containing A such that $m^*(O) \le m^*(A) + \epsilon$.
 - Define a Lebesgue measurable set. Show that if $m^*(E) = 0$, then every subset of E is Lebesgue measurable. Further, if F is Lebesgue measurable and $m^*(F\Delta G) = 0$, then show that G is Lebesgue measurable OYSIUS COLLECT+5)
- 2.a) Show that every interval is Lebesgue measurable and hence prove that every Borel set is measurable.
- b) For k > 0 and $A \subseteq \mathbb{R}$ let $kA = \{kx \mid x \in A\}$. Show that $m^*(kA) = km^*(A)$. (11+3)
- 3.a) Prove that the following statements regarding the set $E \subseteq \mathbb{R}$ are equivalent:
 - i) E is Lebesgue measurable.
 - ii) For all $\epsilon > 0$, there exists 0, an open set, $0 \supseteq E$ such that $m^*(0 E) \le \epsilon$.
 - iii) There exists G, a $G_{\delta}-set$, $G\supseteq E$ such that $m^*(G-E)=0$.
- b) Define a Lebesgue measurable function. If $\{f_n\}$ is a sequence of Lebesgue measurable functions defined on the same measurable set, then show that $'\inf f_n'$ is Lebesgue measurable. (10+4)
- 4.a) Define a simple function, and the Lebesgue integral of a simple function. If $a_1, a_2, ... a_n$ are the distinct values taken by a measurable simple function ϕ and if $A_i = \{x \mid \phi(x) = a_i\}, 1 \le i \le n$ then prove that
 - i) $\int_E \phi \, dx = \sum_{i=1}^n a_i m(A_i \cap E) \text{ for any measurable set } E.$
 - ii) $\int a \phi \, dx = a \int \phi \, dx \text{ for all } a > 0.$
 - b) Define the Lebesgue integral of a non-negative measurable function. Show that if f is a non-negative measurable function, then f=0 a.e. if and only if, $\int f \, dx = 0. \tag{7+7}$

- 5.a) State Fatou's lemma. Let $\{f_n, n=1,2,3,...\}$ be a sequence of non-negative measurable functions such that $\{f_n(x)\}$ is monotone increasing for each x. If $f=\lim f_n$, then prove that $\int f dx = \lim_{n \to \infty} \int f_n dx$.
 - b) Let f be a non-negative measurable function. Then prove that there exists a sequence $\{\phi_n\}$ of measurable simple functions such that $\int f dx = \lim_{n \to \infty} \int \phi_n dx$.
 - c) If f and g are non-negative measurable functions, prove that $\int (f+g)dx = \int f dx + \int g dx$. (3+6+5)
- 6.a) Define a measure space $[|X,S,\mu|]$ and $L^1(X,\mu)$. Show that $L^\infty(X,\mu)$ is a vector space over the real numbers.
 - b) Define a convex function Ψ on an interval (a,b). Prove that a convex function on (a,b) is continuous. (5+9)
- 7.a) State and derive Holder's inequality.
 - b) Let f and g be non-negative measurable functions. Show that equality occurs in Holder's inequality if, and only if, $sf^p + tg^q = 0$ a.e. for some constants s and t not both zero.

 ST.ALOYSIDS (CLEGE (7+7))
- 8.a) Define a signed measure on a measure space [|X,S|]. When do you say that a set $A \subseteq X$ is a positive set with respect to a signed measure γ on [|X,S|]. Prove that a countable union of positive sets with respect to a signed measure γ is a positive set.
 - b) Show that if $\phi(E) = \int_E f d\mu$, where $\int f d\mu$ is defined, then ϕ is a signed measure.

,5 564	Reg. No:
	St Aloysius College (Autonomous)
	Mangaluru
pH 56	
	Dog No.
	St Aloysius College (Autonomous)
	Mangalium
	Semester IV - P.G. Examination - M.Sc. Mathematics
	April - 2019
ime:	COMPLEX ANALYSIS II Max Marks: 70
nsw	Posing a simply (14×5=70)
. a)	Define a simply connected region. Give two examples.
b)	Prove that a region Ω is simply.
	γ in Ω and all points 'a' which do not belong 19ALOYSIUS COLLEGE
	PG Library (2+12)
(, a)	State and prove the residue theorem. MANGALORE-575 903
b)	Find a homology basis for the annulus defined by $r_1 < z < r_2$.
-1	Figure $\int_{-e^{2z}}^{e^{2z}}$.
(C)	Evaluate $\int_C \frac{e^{2z}}{(z+1)^4} dz$ where C is the circle $ z =2$.
	(8+4+2)
3. a)	Find the value of $\int_{ z =1} \cot z dz$.
	State and prove the argument principle.
c)	
-/	How many roots of the equation $z^4 - 6z + 3 = 0$ have their modulus between 1 and 2?
d)	Evaluate $\int_0^\infty \frac{\sin x}{x(1+x^2)} dx$.
,	$J_0 = x(1+x^2)^{-1/2}$
	(2+5+2+5)
4. a)	If u_1 and u_2 are harmonic in a region Ω , then prove that
	$\int_{\gamma} \ u_1 \ ^* du_2 - u_2 \ ^* du_1 = 0 \ \text{ for every cycle } \gamma \text{ which is homologous to zero in } \ \Omega.$
b)	State and prove the mean-value property for harmonic functions.
	(7+7)
. a)	Prove that a non-costant harmonic function defined in a region Ω has neither a
	maximum nor a minimum in Ω .
b)	If $f(z)$ is analytic in $ z <1$ and satisfies $ f =1$ on $ z =1$, then show that $f(z)$
	is rational.
c)	State Poisson's formula.

(7+5+2) Contd...2

6. a) Suppose that $f_n(z)$ is analytic in the region Ω_n and that the sequence $\{f_n(z)\}$ converges to a limit function f(z) in a region Ω , uniformly on every compat subset of Ω , then prove that f(z) is analytic in Ω .

b) Show that $\lim_{n\to\infty} \left(1+\frac{z}{n}\right)^n = e^z$ uniformly on every compact subset of the complex plane. (7+7)

- 7. a) If f(z) is analytic in a region containing a', then show that the representation $f(z) = f(a) + f'(a)(z-a) + \dots + \frac{f^{(n)}(a)}{n!}(z-a)^n + \dots$ is valid in the largest open disc centered at 'a' and contained in Ω .
- b) Expand $f(z) = \frac{z}{(z-1)(z-2)}$ in a Laurent's series, valid for 1 < |z| < 2.

ST. ALUYSIUS COLLEGE MANGALORE-575 003

(10+4)

- 8. a) Prove that a necessary and sufficient condition for the absolute convergence of the product $\prod_{n=1}^{\infty} (1+a_n)$ is the convergence of the series $\sum_{n=1}^{\infty} |a_n|$.
 - b) Prove that every function which is meromorphic in the whole plane is the quotient of two entire functions.
 - c) Evaluate $\Gamma\left(\frac{1}{2}\right)$.

(7+5+2)

200	564.4
26	20

Reg. No:			
-	1 1		

St Aloysius College (Autonomous)

Mangaluru

Semester IV - P.G. Examination - M. Sc. Mathematics

April - 2019

FUNCTIONAL ANALYSIS

Max. Marks: 70

Answer any FIVE FULL questions from the following

(14x5=70)

- State and prove the Cantor's intersection theorem in metric spaces.
 - State and prove Baire's category theorem. b)

(7+7)

- Prove that the following are equivalent for a linear transformation Tfrom a normed linear space N into a normed linear space N'.
 - i) T is continuous

ST.ALOYSIUS COLLEGE

ii) T is continuous at the origin.

- iii) There exists a real number $K \ge 0$ such that $||T(x)|| \le K ||x||$ for every $x \in N$.
- iv) If $S = \{x \in N : ||x|| \le 1\}$ then T(S) is a bounded set in N'.
- Prove that a nonzero normed linear space N is a Banach space if and (7+7)only if $\{x \in N : ||x|| = 1\}$ is complete.
- Prove that the set of all bounded linear transformations of a normed linear 3. a) space into a Banach space is itself a Banach space.
 - Let $\mathcal{B}(N)$ denote the algebra of operators on a normed linear space N. if $T_n \to T$ and $T_n \to T'$ in $\mathcal{B}(N)$, then show that $T_n T_n \to TT'$ in $\mathcal{B}(N)$.
 - Let N and N' be normed linear spaces. Define an isometric isomorphism of N into N'. If $T: N \to N'$ is an isometric isomorphism of N onto N', then show that $T^{-1}: N' \to N$ is also an isometric isomorphism.

(10+2+2)

State and prove the open mapping theorem. 4.

(14)

- Let B be a Banach space and M,N be closed linear subspaces of B such 5. a) that $B = M \oplus N$. Then prove that there exists a projection P on B such that M is the range of P and N is the null space of P.
 - Let B be a Banach space and N be a normed linear space. If $\{T_i\}_{i \in I}$ is a nonempty set of continuous linear transformations of B into N such that $\{T_i(x)\}_{i\in I}$ is a bounded subset of N for each $x \in B$, then prove that $\{T_i\}_{i\in I}$ is a bounded subset of $\mathcal{B}(B,N)$. (7+7)

a) If M is a proper closed linear subspace of a Hilbert space H, then prove
that there exists a nonzero vector z₀ in H such that z₀⊥M.

- b) If M and N are closed linear subspaces of a Hilbert space H such that $M \perp N$ then prove that M + N is also closed.
- c) If M is a closed linear subspace of a Hilbert space H, then prove that $H = M \oplus M^{\perp}$. (5+5+4)
- 7. a) Let $\{e_i\}_{i \in I}$ be an orthonormal set in a Hilbert space H. Show that for any vector x in H, the set $\{e_i : \langle x, e_i \rangle \neq 0\}$ is atmost countable and prove that $\sum_{i \in I} |\langle x, e_i \rangle|^2 \leq ||x||^2.$
 - b) Let H be a Hilbert space. Prove that for each operator $T \in \mathcal{B}(H)$ there exists a unique operator $T^* \in \mathcal{B}(H)$ such that $\langle T(x), y \rangle = \langle x, T^*(y) \rangle$, for all $x, y \in H$.
- 8. State and prove the spectral theorem for a finite dimensional Hilbert space. (14)

Reg. No. :

St Aloysius College (Autonomous)

Mangaluru Semester IV - P.G. Examination - M.Sc. MATHEMATICS APRIL - 2019

PARTIAL DIFFERENTIAL EQUATIONS

Time: 3 Hours

Max. Marks: 70

Answer any FIVE FULL questions from the following:

(14x5=70)

- 1.a) Prove that a necessary and sufficient condition for a differential equation $P(x,y,z) \ dx + Q(x,y,z) \ dy + R(x,y,z) \ dz = 0 \text{ to be integrable is that } X. \ curl \ X = 0.$
 - b) Find the integral curves of the equations

$$\frac{dx}{e^{-y}\cos x} = \frac{dy}{e^{-y}\sin x} = dz$$

ST.ALOYSIUS COLLEGE PG Library MANGALORE-575 903

c) Test for integrability of

$$(y+z)dx + (z+x)dy + (x+y)dz = 0$$
 and find its primitive.

(7+3+4)

2.a) Define orthogonal trajectories. Find the orthogonal trajectories on the cone (x + y)z = 1 of the conics in which it is cut by the system of planes x - y + z = K, where K is a parameter.

b) Solve
$$(y^2 + yz) dx + (xz + z^2) dy + (y^2 - xy) dz = 0$$
.

(7+7)

- 3.a) Obtain the partial differential equation for the function $f(x^2 + y^2 + z^2, z^2 2xy) = 0$, where f is an arbitrary function.
 - b) Find the integral surface of the linear partial differential equation $x(y^2+z)p-y(x^2+z)q=(x^2-y^2)z \text{ containing the straight line } x+y=0, z=1.$
 - c) Find the complete integral of $pqu = p^2(xq + p^2) + q^2(yp + q^2)$

(4+7+3)

- 4.a) Find the characteristic of the equation pq = z and determine the integral surface which passes through the straight line x = 1, z = y.
 - b) Derive a necessary condition for the compatibility of f(x,y,u,p,q)=0 and g(x,y,u,p,q)=0. (8+6)
- 5.a) Find the surface which is orthogonal to the one parameter family of system $x^2 + y^2 + u^2 = Ku$.
 - b) Find the general solution of $(2x-y)y^2 u_x + 8x^2(y-2x) u_y = 2(4x^2+y^2) u$ and deduce the solution of Cauchy problem $u(x,0) = \frac{1}{2x}$ on the portion of the x-axis.

6.a) Solve
$$(D^2 + DD' - 6D'^2)u = y \cos x$$
.

b) Solve
$$(D^2 - D')u = e^{2x+y}$$
.

c) Solve
$$(D^2 - DD' + D' - 1)u = \cos(2x + y)$$
. (7+2+5)

- 7.a) Give the classification of a second order semilinear partial differential equation in two independent variables for a single unknown function u(x,y). Give the canonical forms of the transformed equations. In the hyperbolic case describe the method of reducing it to the canonical form.
 - b) Find the characteristics of the equation $u_{xx} + 2u_{xy} + \sin^2 x u_{yy} + u_y = 0$ when it is of hyperbolic type. (12+2)
- 8.a) Classify the following equation and reduce it to canonical form $y^2u_{xx} x^2u_{yy} = 0$.
 - b) Solve the one-dimensional diffusion equation in the region $0 \le x \le \pi, \ t \ge 0$ Subject to the conditions
 - i) T remains finite as $t \to \infty$
 - ii) T=0 if x=0 and $x=\pi$, $\forall t$

iii) At
$$t = 0$$
, $T = \begin{cases} x, & 0 \le x \le \frac{\pi}{2} \\ \pi - x, & \frac{\pi}{2} \le x \le \pi \end{cases}$ (7+7)

ST.ALOYSIUS COLLEGE PG Library MANGALORE-575 003

	566.4
62	

Reg. No:

	 _		
			_
		-	_

St Aloysius College (Autonomous)

Mangaluru

semester IV - P.G. Examination - M. Sc. Mathematics April - 2019

ALGEBRAIC NUMBER THEORY

Time: 3 Hours

Max. Marks: 70

Answer any FIVE FULL questions from the following

(14x5=70)

- Prove that Euler's phi-function $\phi(n)$ is a multiplicative function. 1. a)
 - Prove that $a^{\phi(m)} \equiv 1 \pmod{m}$, if $\gcd(a, m) = 1$. b)

Solve the congruence $5x \equiv 3 \pmod{24}$. c)

(7+4+3)

- State and prove Lagrange's theorem. Use it to prove Wilson's theorem. 2. a)
 - Find all primes p such that the Legendre symbol (-3|p)=1. b)
- If p is an odd prime and $n \in \mathbb{Z}$, show that the Legendre symbol 3. a)

 $(n|p) \equiv n^{\frac{p-1}{2}} \pmod{p}$.

ST.ALOYSIUS COLLEGE MANGALORE-575 003

- State and prove Gauss Lemma. b)
- State quadratic reciprocity law. Let q be an odd prime. Prove that, if c) $q \equiv 1 \pmod{4}$ then q is quadratic residue mod p if and only if (4+6+4) $p \equiv r \pmod{q}$, where r is quadratic residue mod q.
- Define an algebraic number and an algebraic integer. Show that a rational number is an algebraic integer if and only if it is an integer. 4. a)
 - Let K be an algebraic number field and $[K:\mathbb{Q}] = n$. If $\alpha \in K$ and $\sigma_1, \sigma_2, ..., \sigma_n$ are the distinct $\mathbb Q$ -isomorphisms from K into $\mathbb C$, then prove that
 - i) $Tr_{K/Q}(\alpha) = \sigma_1(\alpha) + \sigma_2(\alpha) + \dots + \sigma_n(\alpha)$
 - ii) $Norm_{K/Q}(\alpha) = \sigma_1(\alpha)\sigma_2(\alpha)...\sigma_n(\alpha)$.

Hence deduce that Trace is additive function and Norm is multiplicative

- For any algebraic number field K , prove that the discriminant $d_{K/Q}$ is congruent to 0 or 1(mod 4).
 - Determine the discriminant of $\mathbb{Q}(\sqrt{d})$, where d is a square free integer. (10+4)

6. a) Let $K = \mathbb{Q}(\sqrt{d})$, where d is a square-free integer. Show that

- b) Let $K = \mathbb{Q}(\sqrt{d})$, where d < 0, square free integer and $d = 3 \pmod{4}$. Show that O_K is UFD if and only if d = -1.
- 7. a) Prove that every PID is a Dedekind domain. Is the converse true? Justify,
 - b) Show that every non-zero ideal of O_K contains a product of finitely many non-zero prime ideals of O_K . (7+7)
- a) Define a fractional ideal of O_K. Show that sum and product of two fractional ideals are again fractional ideals.
 - b) Let \wp be a prime ideal of O_K and $\wp^{-1} = \{\alpha \in K \mid \alpha \wp \subseteq O_K\}$. Show that \wp^{-1} is a fractional ideal of O_K , $O_K \subseteq \wp^{-1}$ and $\wp \wp^{-1} = O_K$. (4+10)

St Aloysius College (Autonomous) Mangaluru

Semester IV - P.G. Examination - M. Sc. Mathematics

MEASURE THEORY AND INTEGRATION

time: 3 Hours

Max. Marks: 70

Answer any FIVE FULL questions from the following

(14x5=70)

- a) Let E be a Lebesgue measurable subset of R. Prove the following:
 - i) m*(E) = m*(E + y)
 - ii) $E + y = \{x + y : x \in E\}$ is measurable.
 - Show that the class of all Lebesgue measurable subsets of R is a σ - algebra. (5+9)
- Given a subset A of \mathbb{R} and $\varepsilon > 0$, prove that 2. a)
 - i) there exists an open set O such that A ⊆ O and m*(O)≤m*(A)+ε.
 - ii) there exists a G_{δ} set G such that $A \subseteq G$ and m * (A) = m * (G).
 - Show that every interval is measurable.
 - Show that [0, 1] is uncountable.

((3+3)+6+2)

- Let f be a measurable function, prove the following: 3.
 - i) If f = g a.e., then g is measurable.

MANGALORE-575 003

- ii) $f \leq ess \sup f$ a.e.
- iii) If B is a borel set, then $f^{-1}(B)$ is a measurable set.
- 4. a)
 - State and prove Lebesgue's monotone convergence theorem.
 - If f and g are non-negative measurable functions and if c is a non-6) negative real number, then show that $\int (cf + g)dx = c \int f dx + \int g dx$

(4+10)

- If f is Riemann integrable and bounded over the finite interval [a,b] then 5. a) prove that f is integrable and $R \int_{0}^{x} f dx = \int_{0}^{x} f dx$. Is the converse holds? Justify.
 - Show that $\int_{x}^{\infty} \frac{dx}{x} = \infty$.

(12+2)

- Prove that convex function defined on an open interval is continuous. 6. a)
 - State and prove Holder's inequality and discuss the case of equality. b)

(6+8)

Show that L^p spaces $(1 \le p \le \infty)$ are complete. 7.

- (14)
- Show that if $\phi(E) = \int f d\mu$ where $\int f d\mu$ is defined, then ϕ is a signed 8. a)

measure.

State and prove Jordan decomposition theorem

(2+12)

ρН	56	2.	4
----	----	----	---

Reg. No.

St Aloysius College (Autonomous) Mangaluru

Semester IV - P.G. Examination - M.Sc. Mathematics April - 2018 COMPLEX ANALYSIS II

time: 3 hrs.

Max Marks: 70

Answer any FIVE FULL questions from the following:

(14×5=70)

- 1. a) Prove that a region Ω is simply connected if and only if $n(\gamma, a) = 0$ for all cycles γ in Ω and all points a which do not belong to Ω .
 - b) Is $\Omega=\mathbb{C}-\{a\}$ simply connected? Justify your answer.

(12+2)

- 2. a) Define the residue of f(z) at an isolated singularity a'.
 - b) State and prove the Residue theorem.
 - c) State and prove the Argument principle.

(2+7+5)

ST.ALOYSHUS COLLEGE

- 3. a) Evaluate $\int_{\mathcal{C}} \frac{3z^2+z-1}{(z^2-1)(z-3)} dz$ where C is the circle |z|=2.
 - b) Let $(z)=rac{z^2+1}{(z^2+2z+2)^2}$. Evaluate $rac{1}{2\pi i}\int_{\mathcal{C}}rac{f'(z)}{f(z)}dz$, where \mathcal{C} is the circle |z|=4.
 - c) State and prove Rouche's theorem.
 - d) Evaluate $\int_{-\infty}^{\infty} \frac{\sin x}{x^2 + 4x + 5} dx$.

(2+2+5+5)

- 4. a) State and prove the mean-value property for harmonic functions.
 - b) Let u be a bounded harmonic function in $0 < |z| < \rho$. Show that the origin is a removable singularity in the sense that u can be extended to a harmonic function in $|z| < \rho$ when u(0) is properly defined.

(7+7)

- 5. a) Prove that a nonconstant harmonic function defined in a region Ω has neither a maximum nor a minimum in Ω .
 - b) If Ω^+ denotes the part of the upper-half plane of a symmetric region Ω , σ is the part of real-axis in Ω and v(z) is real and continuous in $\Omega^+ \cup \sigma$, harmonic in Ω^+ and zero on σ , then show that v has a harmonic extension to Ω which satisfies the symmetry relation $v(\bar{z}) = -v(z)$.

(7+7)

- 6. a) If the functions f_n(z) are analytic and ≠ 0 in a region Ω, and if f_n(z) converges to f(z) uniformly on every compact subset of Ω, then prove that f(z) is either identically zero or never equal to zero in Ω.
 - b) Show that $\lim_{n\to\infty} \left(1 + \frac{z}{n}\right)^n = e^z$ uniformly on every compact subset of the complex plane.

(7+7)

- 7. a) If f(z) is analytic in a region containing a', then show that the representation $f(z) = f(a) + f'(a)(z-a) + \dots + \frac{f^{(n)}(a)}{n!}(z-a)^n + \dots \text{ is valid in the largest open disc centered at } a' \text{ and contained in } \Omega.$
 - b) Find the Laurent series expansion of the function $\frac{z^2-1}{(z+2)(z+3)}$ valid in the annular region 2 < |z| < 3.

(10+4)

- 8. a) Prove that the infinite product $\prod_{n=1}^{\infty} (1+a_n)$ with $1+a_n \neq 0$ converges simultaneously with the series $\sum_{n=1}^{\infty} \log(1+a_n)$ whose terms represent the values of the principal branch of logarithm.

 ST.ALOYSIUS COLLEGE PG Library MANGALORE-575 003
 - b) Evaluate $\Gamma\left(\frac{1}{2}\right)$.

(12+2)

Reg. No:

St Aloysius College (Autonomous) Mangaluru

Semester IV - P.G. Examination - M. Sc. Mathematics

April - 2018

FUNCTIONAL ANALYSIS

time: 3 Hours

Max. Marks: 70

Answer any FIVE FULL questions from the following (14x5=70) State and prove the Cantor's intersection theorem in metric spaces.

- Define a nowhere dense set in a metric space. Let $\{A_n\}$ be a sequence of b) nowhere dense sets in a complete metric space X. Prove that there exists a point in X which is not in any of the A_n 's
- Define a Banach space. Let p be a real number such that $1 \le p < \infty$. Prove that the linear space l_p of all sequences $x = (x_1, x_2,...)$ of scalars such that $\sum_{i=1}^{\infty}\left|x_{i}\right|^{p}<\infty\text{ , with respect to the norm defined by }\left\|x\right\|_{p}=\left(\sum_{i=1}^{\infty}\left|x_{i}\right|^{p}\right)^{1/p}\text{ is a}$ Banach space.
 - Prove that a nonzero normed linear space N is a Banach space if and b) only if $\{x \in N : ||x|| = 1\}$ is complete as a subspace of N. (7+7)
- 3. a) Let N be a finite dimensional normed linear space with dimension n > 0and let $\{e_1,e_2,...,e_n\}$ be a basis for N . Let a map $T:N\to l_1''$ be defined by $T(x) = (x_1, x_2, ..., x_n)$ whenever $x = x_1 e_1 + x_2 e_2 + ... + x_n e_n$. Then prove that T is continuous. Deduce that every linear transformation from N into any arbitrary normed linear space N' is continuous.
 - b) If L is a normed linear space with respect to two norms $\|.\|$ and $\|.\|$, then prove that these two norms are equivalent if and only if there exist two positive real numbers K_1 and K_2 such that $K_1 ||x|| \le ||x|| \le K_2 ||x||$, for all $x \in L$. (10+4)
 - If N is a normed linear space, then prove that there is an isometric isomorphism of N into N^{**} .
 - b) Let M be a closed linear subspace of a normed linear space N and let x_0 be a vector not in M. If d is the distance from x_0 to M, then show that there exists a functional f_0 in N^* such that $f_0(M) = 0$, $f_0(x_0) = 1$ and

$$\left\|f_0\right\| = \frac{1}{d}.\tag{7+7}$$

Let B and B' be Banach spaces and T be a linear transformation of B into B'. Prove that T is continuous if and only if its graph is closed.

- b) Let B be a Banach space and N be a normed linear space. If $\{T_i\}_{i \in I}$ is a nonempty set of continuous linear transformations of B into N such that $\{T_i(x)\}_{i \in I}$ is a bounded subset of N for each $x \in B$, then prove that $\{T_i\}_{i \in I}$ is a bounded subset of $\mathcal{B}(B, N)$. (7+7)
- a) If M is a proper closed linear subspace of a Hilbert space H, then prove that there exists a nonzero vector z₀ in H such that z₀⊥M.
 - b) If M and N are closed linear subspaces of a Hilbert space H such that M \(\preceq N\), then prove that M + N is also closed.
 - c) If M is a closed linear subspace of a Hilbert space H, then prove that $H = M \oplus M^{\perp}$. (5+5+4)
- 7. a) Let H be a Hilbert space and f be an arbitrary functional in H*. Then prove that there exists a unique vector y in H such that f(x)=⟨x, y⟩ for every x∈ H.
 - b) Let H be a Hilbert space. Prove that the adjoint operation $T \mapsto T^*$ on $\mathcal{B}(H)$ satisfies:

 ST.ALOYSIUS COLLEGE
 - i) $(T_1 + T_2)^* = T_1^* + T_2^*$ ii) $(T_1 T_2)^* = T_2^* T_1^*$. MANGALORE-575 003
 - c) If T is an operator on a Hilbert space H such that $\langle Tx, x \rangle = 0$ for all $x \in H$, then prove that T = 0.
- 8. Let $\{e_1, e_2, ..., e_n\}$ be a finite orthonormal set in a Hilbert space H. Then for any $x \in H$, show that $x \sum_{i=1}^{n} \langle x, e_i \rangle e_i \perp e_j$ for j = 1, 2, ..., n. Extend this result suitably to an arbitrary set $\{e_i\}_{i \in I}$ of orthonormal vectors in H.

	i			4
 5	6	9	٠	•

Reg. N	o. :			
Reg. N	0. :			

St Aloysius College (Autonomous) Mangaluru

Semester IV - P.G. Examination - M.Sc. MATHEMATICS
APRIL - 2018

PARTIAL DIFFERENTIAL EQUATIONS

time: 3 Hours

Max. Marks: 70

Answer any FIVE FULL questions from the following:

(14×5=70)

- Show that the general solution of Lagrange's equation $P(x,y,u)u_x + Q(x,y,u) \ u_y = R(x,y,u) \ \text{is} \ F\big(\phi(x,y,u),\psi(x,y,u)\big) = 0, \ \text{where} \ F \ \text{is}$ an arbitrary function and $\phi(x,y,u) = c_1$ and $\psi(x,y,u) = c_2$ are integral curves of $\frac{dx}{P(x,y,u)} = \frac{dy}{Q(x,y,u)} = \frac{du}{R(x,y,u)}$
- b) Find the orthogonal trajectories on the cone yz + zx + xy = 0 of the conics in which it is cut by the system of planes x y = c where c is a parameter. (7+7)
- 2.a) Prove necessary and sufficient condition that there exists between two functions u(x,y) and v(x,y) a relation F(u,v)=0, not involving x or y explicitly is that $\frac{\partial(u,v)}{\partial(x,y)}=0$.
- b) Test for integrability of $2y(a-x) dx + (z-y^2 + (a-x)^2) dy y dz = 0$ and find its primitive. ST.ALOYSIUS COLLEGE PG Library (7+7)

 MANGALORE-575 003
- 3.a) Find the general integral of the equation (x y)p + (y x z)q = z and the particular solution through the circle z = 1, $x^2 + y^2 = 1$.
 - b) Find the equation of the system of surfaces which cut orthogonally the cones of the system $x^2 + y^2 + z^2 = cxy$. (7+7)
- 4.a) Show that the equations xp yq = x and $x^2p + q = xz$ are compatible and find their solution.
- b) Find the characteristics of the equation pq = z. Also determine the integral surface which passes through the parabola x = 0, $y^2 = z$.

(7+7)

- 5.a) Obtain the partial differential equation for the function $z = f\left(\frac{xy}{z}\right)$, where f is an arbitrary function.
 - b) Find the complete integral of $p^2z^2 + q^2 = 1$.
 - c) Find the complete integral of $(p^2 + q^2)y = qz$ using Charpit's method.

(4+3+7)

- 6.a) Solve (D + D')(D + 2D')u = x + y.
 - b) Solve $(D D' 1)(D D' 2)u = e^{2x-y} + x$.
 - c) Solve $(D^2 + DD' 6D'^2)u = ycosx$.

 ST.ALOYSIUS COLLEGE

 PG Library

 MANGALORE-575 00:
- 7.a) Classify the following equation and reduce it to canonical form $u_{xx} + xu_{yy} = 0$, $x \neq 0$, $y \neq 0$.
 - b) Construct adjoint operator L^* for $Lu = a(x)\frac{d^2u}{dx^2} + b(x)\frac{du}{dx} + c(x)u$ where a,b,c are functions of x. (10+4)
- 8.a) A uniform rod of length L whose surface is thermally insulated initially at temperature $\theta = \theta_0$. At time t = 0, one end is suddenly cooled to $\theta = 0$ and subsequently maintained at this temperature, the other end remains thermally insulated. Find the temperature distribution $\theta(x,t)$.
 - b) A stretched string of finite length L is held fixed at its ends and is subjected to an initial displacement $u(x,0)=u_0\sin\left(\frac{\pi x}{L}\right)$. The string is released from this position with zero initial velocity. Find the resultant time dependent motion of the string. (7+7)

STALOYSIUS COLLECT
PETTIBLES
ALANGALORES SOS

					120
		-	c	6	.4
124	-		o	v	* *

Reg. No:

St Aloysius College (Autonomous) Mangaluru

Semester IV – P.G. Examination - M. Sc. Mathematics 2018

ALGEBRAIC NUMBER THEORY

rime: 3 Hours

Max. Marks: 70

Answer any FIVE FULL questions from the following

(14x5=70)

Define Euler totient function $\phi(n)$. Prove that, for positive integers

$$m, n$$
; i) $\phi(n) = n \prod_{p \mid n} \left(1 - \frac{1}{p}\right)$ and

i) $\phi(n) = n \prod_{p \neq n} \left(1 - \frac{1}{p}\right)$ and ST.ALOYSIUS COLLEGE PG Library MANGALORE-575 003

ii) $\phi(mn) = \phi(m) \phi(n) \frac{d}{\phi(d)}$ where $d = \gcd(m, n)$.

- Given a prime p, let $f(x) = c_0 + c_1 x + ... + c_n x^n$ be a polynomial of degree n with integer coefficients such that $c_n \neq 0 \pmod{p}$. Then prove that, the polynomial congruence $f(x) \equiv 0 \pmod{p}$ has at most n solutions.
- For any a > n, show that $n \mid \phi(a^n 1)$.

(8+4+2)

- Let p be an odd prime number greater than 3. Show that the numerator of $1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n-1}$ is divisible by p^2 .
 - Define the Legendre symbol (n|p). For an odd prime p prove that $(2|p) = (-1)^{\frac{p^2-1}{8}}$.
 - Find all primes p such that $x^2 \equiv 13 \pmod{p}$ has a solution. (4+5+5)
- 3. a) State and prove Gauss Lemma.
 - State and prove quadratic reciprocity law. Hence determine the value of Legendre symbol (219|383). (7+7)
- Prove that, the following statements are equivalent: 4. a)
 - i) α is an algebraic integer.
 - ii) The minimal polynomial of α is monic and in $\mathbb{Z}[x]$.
 - iii) $\mathbb{Z}[\alpha]$ is finitely generated \mathbb{Z} module.
 - iv) \exists a finitely generated \mathbb{Z} module $M \neq \{0\}$ of \mathbb{C} such that $\alpha M \subseteq M$.
 - Prove that every algebraic number field has an integral basis. (6+8)
- 5. Let O_K be the ring of algebraic integers of an algebraic number field K. Then prove that
 - If I is a non-zero ideal of O_K, then I has an integral basis.
 - ii) If $\alpha \in O_K$ then $Norm((\alpha)) = |Norm_{\kappa/Q}(\alpha)|$
 - iii) If α is unit in O_K , then $Norm_{Kio}(\alpha) = \pm 1$

(14)

- 6. a) Find the units in the ring of integers of an imaginary quadratic number field $\mathbb{Q}(\sqrt{d})$.
 - b) Prove that the ring of integers of an imaginary quadratic number field $\mathbb{Q}(\sqrt{d})$ is norm-Euclidean if d = -1, -2, -3, -7 or -11. (6+8)
- 7. a) Define a Dedekind domain. Prove that O_K is a Dedekind domain.
 - b) Show that every unique factorization domain is integrally closed.
 - c) Show that Z [√-5] is a Dedekind domain, but not a principal ideal domain.
 (8+4+2)
- a) Show that every non-zero ideal of O_κ contains a product of finitely many non-zero prime ideals of O_κ.
 - b) Define a fractional ideal of O_K . Show that any fractional ideal is finitely generated as an O_K -module.
 - c) Show that sum and product of two fractional ideals of O_K are again fractional ideals.

 STALOYSIUS COLLEGE (6+4+4)

ANGALORE-575.003