DH	-01	()
DH	10	

Reg.	No.			

St. Aloysius College (Autonomous)

Semester III - P.G. Examination - M. Sc. Mathematics

February - 2022

Complex Analysis I

Time: 3 Hours

ST. ALOYSIUS COLLECMax. Marks: 70

PG Library

Answer any <u>FIVE FULL</u> questions from the following ANGALORE - 575 003 $(14 \times 5 = 70)$

- 1. (a) In the spherical representation of the extended complex plane, show that the circles and straight lines in the extended complex plane correspond to the circles on the Riemann sphere.
 - (b) Find the distance between the stereographic projections of $1 + i\sqrt{3}$ and $1 i\sqrt{3}$.
 - (c) Find the values of $\sqrt{1+i}$.

(9+3+2)

- 2. (a) State and prove a necessary and sufficient condition for a function f(z) = u(z) + i v(z) to be analytic in a region Ω .
 - (b) State and prove the Lucas's theorem.

(9+5)

- 3. (a) Let $\sum_{n=1}^{\infty} f_n$ be a series of complex-valued functions where each f_n is defined on a subset E of \mathbb{C} . If $\sum_{n=1}^{\infty} a_n$ is a convergent majorant of $\sum_{n=1}^{\infty} f_n$ on E, then show that $\sum_{n=1}^{\infty} f_n$ converges uniformly on E.
 - (b) If $\sum_{n=0}^{\infty} a_n z^n$, $a_n \in \mathbb{C}$ is a power series, then show that there exists a real number R with $0 \le R \le \infty$, called the radius of convergence, such that in |z| < R, the sum of the series is an analytic function, the derivative can be obtained by term-wise differentiation, and the derived series has the same radius of convergence. (5+9)
- 4. (a) State and prove the Cauchy's necessary and sufficient condition for uniform convergence of a sequence.
 - (b) Find the radius of convergence of $\sum_{n=0}^{\infty} \frac{z^n}{n!}$.
 - (c) Show that e^{iz} has the least positive period 2π and all other periods are integer multiples of 2π .

(5+2+7)

5. (a) Show that the cross ratio (z_1, z_2, z_3, z_4) is real if and only if the four points z_1, z_2, z_3, z_4 lie on a circle or a straight line.

- (b) If z_1, z_2, z_3, z_4 are four distinct points of the extended complex plane and T is a linear transformation, then show that $(Tz_1, Tz_2, Tz_3, Tz_4) = (z_1, z_2, z_3, z_4)$.
- (c) Show that any linear transformation which maps z_2, z_3, z_4 to $1, 0, \infty$, respectively, is unique. (7+4+3)
- 6. (a) Let Ω be a region and γ be any piecewise differentiable arc in Ω . Show that the integral $\int_{\gamma} f \, dz$ with continuous f, depends only on the end points of γ if and only if f is the derivative of an analytic function in Ω .

(b) Compute $\int_{|z|=2} \frac{dz}{z^2+1}$. PG Library MANGALORE 575 003 (10+4)

- 7. (a) Let the function f(z) be analytic on a set R' obtained from a rectangle R by omitting a finite number of interior points $\zeta_1, \zeta_2, \ldots, \zeta_n$. If $\lim_{z \to \zeta_i} (z \zeta_i) f(z) = 0$, for each $i, 1 \le i \le n$, then show that $\int_{\partial R} f(z) dz = 0$.
 - (b) State and prove the Cauchy's theorem for a disk. (5+9)
- 8. (a) Show that the zeros of an analytic function which does not vanish identically are isolated.
 - (b) State and prove the open mapping theorem.
 - (c) State the maximum principle for analytic functions. If f(z) is continuous on a closed and bounded set E and analytic on the interior of E, then show that the maximum of |f(z)| on E is assumed on the boundary of E.

 (3+4+7)

St Aloysius College (Autonomous)

ST. ALOYSIUS COLL PG Library

Semester III - P.G. Examination - M.Sc. Mathematics MANGALORE - 575

February - 2022

ORDINARY DIFFERENTIAL EQUATIONS

Max Marks: 70 Time: 3 hrs.

Note: Answer any five full questions.

(14x5=70)

- 1. a) If $\phi_1(t)$, $\phi_2(t)$, $\phi_3(t)$,...., $\phi_n(t)$ are solutions of the equation $x^{(n)}(t) + a_1(t)x^{(n-1)}(t) + \dots + a_n(t)x(t) = 0$, then prove that they are linearly independent on I if and only if $W(\phi_1(t), \phi_2(t), ..., \phi_n(t)) \neq 0 \quad \forall t \in I$.
 - and prove Abel's formula for n^{th} order linear homogeneous differential (8+6)equation.
- 2. a) Let $\phi_1, \phi_2, \phi_3, \dots, \phi_n$ be *n* linearly independent solutions of the equation, $L_n(x) \equiv x^{(n)}(t) + b_1(t)x^{(n-1)}(t) + \dots + b_n(t)x(t) = 0$ existing on I. Let the real or complex valued function h be defined and continuous on I. Further assume that $W(t) = W(\phi_1(t), \phi_2(t), \dots, \phi_n(t))$ and $W_k(t)$ denote W(t) with k''' column replaced by n elements $0, 0, 0, \dots, 1$. Then prove that a particular solution $x_p(t)$ of

$$L_{n}(x) = h(t) \text{ is given by } x_{p}(t) = \sum_{k=1}^{n} \phi_{k}(t) \int_{t_{0}}^{t} \frac{W_{k}(s) h(s)}{W(s)} ds \; ; \; t, \; t_{0} \in I \; .$$

- b) Find a general solution of $L_2(x) = x'' 2tx' + 2x = 0$. (8+6)
- 3. a) Prove that the functions x^2 and |x|x are linearly independent on [-1,-1] but they are linearly dependent on [-1,0] and [0,1].

b) Solve
$$x^{(4)} + 4x = 2\sin t + 1 + 3t^2 + 4e^t$$
. (6+8)

- 4. a) State and prove orthogonal property of Legendre polynomials.
 - b) Find the Legendre series of the function $f(x) = e^x$. (8+6)
- 5. a) Derive Bessel's function of the first kind. b) With usual notations for Bessel functions show that:

h usual notation
i)
$$\frac{d}{dt}(t^{\rho}J_{\rho}(t)) = t^{\rho}J_{\rho-1}(t)$$
ii) $\frac{d}{dt}(t^{-\rho}J_{\rho}(t)) = -t^{-\rho}J_{\rho+1}(t)$. (9+5)

St Aloysius College (Autonomous) Mangaluru

Semester III - P.G. Examination - M.Sc. Mathematics

February - 2022 TOPOLOGY NT, ALOYSIUS COLLEGI PG LIBERE MANGALORE (\$75 HILL)

Time: 3 hrs.

Max Marks: 70

Answer any FIVE FULL questions from the following:

(14x5=70)

- a) Define a closed set in a topological space. Prove that the union of two closed sets is closed.
 - b) Define the topologies of \mathbb{R} , \mathbb{R}_l and \mathbb{R}_k and compare them.
 - c) Let Y be a subspace of topological space X. Prove that a set A is closed in Y if and only if $A = C \cap Y$ for some closed set C in X.

(2+8+4)

- 2. Let X be a topological space and $A \subseteq X$. Define closure of A in X. Prove the following:
 - a) $x \in A$ if and only if every neighbourhood of x intersects A.
 - b) $\tilde{A} = A \cup A'$ where A' denotes the set of all limit points of A.
 - c) A is a closed subset of X if and only if $A' \subseteq A$.

(2+5+4+3)

- a) If X is topological space then prove that X is T₁ if and only if every finite subset of X is closed.
 - b) Define a Housdroff space. Prove that a topological space X is Housdorff if and only if the diagonal $\Delta = \{(x, x) \in X \times X : x \in X\}$ is closed in $X \times X$.
 - c) Prove that every metric space is Housdorff.

(5+6+3)

- **4.** a) Let X and Y be topological spaces and $f: X \to Y$ be a map. Show that the following are equivalent:
 - i) f is continuous
 - ii) For every subset A of X, $f(\bar{A}) \subseteq \overline{f(\bar{A})}$
 - iii) For every closed subset B of Y the set $f^{-1}(B)$ is closed in X.
 - iv) For each x in X and each neighbourhood V of f(x), there is a neighbourhood U of x, such that $f(U) \subseteq V$.
 - b) State and prove sequence lemma.

(9+5)

- 5. a) Define a connected space. Prove that the union of collection of connected subspaces of X that have a point in common is connected.
 - b) Prove that the product of two path connected spaces is path connected.
 - c) Show that a path connected space is always connected.

(6+6+2)

6. If $f: X \to Y$ is a continuous bijective map from a compact space X into a Housdroff space Y then prove that f is a homeomorphism.

(14)

- 7. a) Define a second countable space. Prove that a metric space (X, d) is separable if and only if it is second countable.
 - b) Prove that every compact Housdroff space is regular.

(8+6)

8. State and prove Urysohn's lemma

(14)

- 6. a) Let A(t) be an $n \times n$ continuous matrix valued function on I. Let $\Phi(t)$ be a fundamental matrix of the system x' = A(t)x, $t \in I$. Then show that $\det(\Phi(t))' = tr(A(t))\det(\Phi(t))$, $t \in I$.
 - b) Find the fundamental matrix for x' = Ax where $A = \begin{bmatrix} -1 & 2 & 3 \\ 0 & -2 & 1 \\ 0 & 3 & 0 \end{bmatrix}$ (7+7)
- 7. a) Let A(t) be an $n \times n$ continuous matrix on I and be periodic with period ω . If $\Phi(t)$ is a fundamental matrix for the system, X' = A(t)X, then show that $\Phi(t + \omega)$ is also a fundamental matrix. Show that any fundamental matrix $\Phi(t)$ can be written as $\Phi(t) = P(t)e^{tR}$, where P(t) is a non-singular matrix of period ω and R is a constant matrix.
 - b) Show that the set of all solutions of the system X'(t) = A(t)X(t), $t \in I$ forms an n-dimensional vector space over the field of complex numbers. (7+7)
 - 8. State and prove Picard's theorem. (14)

ST. ALOYSIUS COLLEGE PG Library MANGALORE-875 004

PS 564. 3

St. Aloysius College (Autonomous), Mangaluru

Semester III P. G. Examination - M. Sc. Mathematics

February 2022

Commutative Algebra

Time: 3 Hours

Answer any FIVE full questions.

Max. Marks: 70

- (a) Define the nilradical of a ring. Prove that the nilradical of A is the intersection of all prime ideals of A.
 - (b) When do you say that two ideal I and J in a ring are coprime? Show that two ideals in A are coprime if and only if their radicals are coprime in A. (8+6)
- 2. (a) For any prime ideal P in a ring A, and $n \in \mathbb{N}$, show that the radical of P^n is P.
 - (b) If U denotes the class of all units in A, then show that the Jacobson radical $J(A) = \{x \in A : 1 xy \in U, \forall y \in A\}.$
 - (c) If I and J are coprime ideals in a ring A, show that $A/IJ \cong A/I \times A/J$. (4+4+6)
- 3. (a) Prove or disprove: Exension of a prime ideal is a prime ideal.
 - (b) Let I_1, I_2, \ldots, I_n be ideals in a ring A. If $\bigcap_{i=1}^n I_i$ is a prime ideal P in A, then show that $P = I_j$ for some j.
 - (c) Define the prime spectrum $\operatorname{Spec}(A)$ of a ring A. Prove that $\operatorname{Spec}(A)$ is a compact topological space. (2+6+6)
- 4. (a) Prove that a nonzero A-module M is isomorphic to a quotient of A^n for some $n \in \mathbb{N}$ if and only if M is a finitely generated A-module.
 - (b) State and prove the Nakayama's lemma.
 - (c) If $0 \to M' \to M \to M'' \to 0$ is an exact sequence of A modules such that M' and M'' are finitely generated, then show that M is also a finitely generated A-module. (5+5+4)

contd...2

PS 564. 3

Page No. 2

- (a) Show that the operation S^{-1} is exact.
 - (b) Let M be an A-module. Prove that the following statements are equivalent:
 - (i) M = 0,
 - (ii) M_P = 0 for all prime ideals P of A,
 - (iii) M_M = 0 for all maximal ideals M of A.
 - (c) Show that the operation S⁻¹ commutes with formation of finite sums, intersections and (4+4+6)radicals.
 - (a) Let $f: A \to B$ be a ring homomorphism and let P be a prime ideal of A. Prove that P is a contraction of a prime ideal of B if $P^{ec} = P$.
 - (b) Let S be a multiplicatively closed subset of a ring A, and let M be a finitely generated A-module. Prove that $S^{-1}M = 0$ if and only if there exists $s \in S$ such that sM = 0.
 - (c) If I is an ideal of a ring A, then show that S = 1 + I is a multiplicatively cosed subset of A. Further deduce that $S^{-1}I$ is contained in the Jacobson radical of $S^{-1}A$.
 - (a) Define a primary ideal of a ring A. Is every primary ideal prime? Justify your answer.
 - (b) Let S be a multiplicatively closed subset of a ring A, and let Q be a P-primary ideal. Prove the following:
 - (i) If $S \cap P \neq \emptyset$, then $S^{-1}Q = S^{-1}A$.
 - (ii) If $S \cap P = \emptyset$, then $S^{-1}Q$ is $S^{-1}P$ -primary.
 - (2+4+8)(c) State and prove the second uniqueness theorem for primary decomposition.
 - 8. (a) Give an example for an A-module which satisfies d.c.c. but not a.c.c.
 - (b) Prove that a ring A is Noetherian if and only if the polynomial ring A[x] is Noetherian. (2+12)

Pile Walt adia