Reg. No:

St Aloysius College (Autonomous) Mangaluru Semester III - P.G. Examination - M. Sc. Mathematics JANUARY-2021

COMPLEX ANALYSIS I

Time: 3 Hours

Max. Marks: 70

Answer any FIVE FULL questions from the following:

(14x5=70)

- 1. a) If $a,b \in \mathbb{C}$ with |a| < 1 and |b| < 1, then prove that $\left| \frac{a-b}{1-\bar{a}b} \right| < 1$.
 - b) In the spherical representation of the extended complex plane, show that the circles and straight lines in the extended complex plane correspond to the circles on the Riemann sphere.
 - C) What does $E = \{z \in \mathbb{C}: |z + i| = 2|z|\}$ represent in the complex plane?

(2+10+2)

- 2. a) If all the zeros of a polynomial P(z) lie in a half-plane, then show that all the zeros of P'(z) also lie in the same half-plane.
 - b) State and prove a necessary and sufficient condition for a function f(z) = u(z) + iv(z) to be analytic in the region Ω .

ST.ALOYSIUS COLLEGE
PG Library
MANGALORE-575 003

- 3. a) If $\sum_{n=0}^{\infty} a_n z^n$, $a_n \in \mathbb{C}$ is a power series, then prove that there exists a number R, $0 \le R \le \infty$ such that $\sum_{n=0}^{\infty} a_n z^n$ converges absolutely for every z with |z| < R, the sum of the series is an analytic function in |z| < R and it diverges for |z| > R.
 - b) Show that $e^{a+b}=e^a.e^b$, for all $a,b\in\mathbb{C}$. Deduce that e^z has no zeros in the complex plane.

(10+4)

- 4. a) Show that the cross ratio (z_1, z_2, z_3, z_4) is real if and only if the four points lie on a circle or on a straight line.
 - b) If a linear transformation carries a circle \mathcal{C}_1 into a circle \mathcal{C}_2 , then prove that it transforms any pair of symmetric points w.r.to \mathcal{C}_1 into a pair of symmetric points w.r.to \mathcal{C}_2 .

(9+5)

- 5. a) Find the linear transformation which maps 1,0,i of the z-plane onto -i,-1,0 of the w-plane respectively.
 - b) If p(x,y) and q(x,y) are real or complex valued continuous functions defined on a region Ω and if γ is any curve in Ω , then show that $\int p dx + q dy \text{ depends only on the end points of } \gamma \text{ if and only if there}$ exists a function U(x,y) in Ω with $\frac{\partial U}{\partial x} = p$ and $\frac{\partial U}{\partial y} = q$.
 - Let $f(z) = \frac{z-i}{z}$ and $(t) = 2e^{it}$, $o \le t \le 2\pi$. Evaluate $\int_{z}^{z} f(z) dz$.

 ST.ALOYSIUS COLLEGE

 PG Library

 MANGALORE-575 003
- 6. a) Show that the index of 'a' with respect to a piece-wise differentiable closed curve γ which does not pass through 'a' is constant in each of the regions determined by γ .
 - b) State and prove Cauchy's theorem for a rectangle.

(4+10)

- 7. a) State and prove Cauchy's integral formula.
 - b) Find the value of $\int_{|z|=2}^{\infty} \frac{e^z}{z-1} dz$.
 - Prove that every polynomial over € of positive degree has atleast one root.

(7+2+5)

- 8. a) State the maximum principle for analytic functions. If f(z) is continuous on a closed and bounded set E and analytic in the interior of E, then show that the maximum of |f(z)| on E is assumed on the boundary of E.
 - b) Show that a non-constant analytic function maps open sets onto open sets. (7+7)

	P	H	5	6	2	. 3
--	---	---	---	---	---	-----

Reg No.	

St Aloysius College (Autonomous) Mangaluru

Semester III - P.G. Examination -M.Sc. Mathematics JANUARY-2021

TOPOLOGY

Time: 3 hours

Max. Marks:70

Answer any FIVE FULL questions from the following:

- 1. a) Define a basis \mathcal{B} for a topology on a set X and the topology τ generated by \mathcal{B} on X. Prove that τ equals the collection of all unions of elements of \mathcal{B} .
 - b) If \mathcal{B} is a basis for the topology of X and \mathcal{C} is a basis for the topology of Y, then prove that the collection $\mathcal{D} = \{B \times C : B \in \mathcal{B} \text{ and } C \in \mathcal{C}\}$ is a basis for the topology of $X \times Y$.
 - c) Prove that a subset A of a topological space X is closed if and only if A contains all its limit points.

 ST.ALOYSIUS COLLEGE

PG Library MANGALORE-575 003

(5+6+3)

- 2. a) Define relative topology and illustrate with an example. If (X, τ) is any topological space and $Y \subset X$ then prove that the family $\tau_y = \{Y \cap G : G \in \tau\}$ forms a topology on Y.
 - b) Let *X* be an ordered set in the order topology. Let *Y* be a subset of *X* that is convex in *X*. Then prove that the order topology on *Y* is the same as the topology *Y* inherits as a subspace of *X*.
 - c) Let X be a topological space and $A \subseteq X$. Define the interior of A and the boundary of A. Prove that closure of A is the disjoint union of Int(A) and Bd(A). (4+5+5)
 - 3. a) Define open maps and closed maps. Show that a continuous open map need not be closed.
 - b) State and prove sequence lemma.
 - c) Let X be a metrizable space. Prove that a map $f: X \to Y$ is continuous if and only if $f(x_n) \to f(x)$ in Y whenever $x_n \to x$ in X. Also Prove the converse holds if X is metrizable. 5+5+4)
 - 4. a) Prove that the real line $\mathbb R$ is connected and so are intervals and rays in $\mathbb R$.
 - b) Prove that every path connected space is connected but not conversely.
 - c) Prove that a space X is locally connected if and only if for every open set U of X, each component of U is open in X.

(5+4+5)

Contd...2

- 5. a) Prove that every compact subspace of a Hausdorff space is closed.
 - Define a homeomorphism. If $f: X \to Y$ is a bijective continuous map, where X is compact and Y is Haursdorff, then show that f is a homeomorphism.

(7+7)

- 6. a) Define a locally compact space. Prove that every compact space is locally compact. Give an example to illustrate that a locally compact space need not be compact.
 - b) Show that product of two Hausdorff spaces is again Hausdorff.
 - c) Define a second countable space. If X is second countable, show that every open cover of X contains a countable subcollection covering X.

(3+4+7)

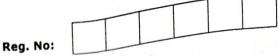
- 7. a) Define a separable space. Prove that every second countable space is separable. Show that the converse holds if *X* is metrizable.
 - b) Define a regular space. Show that every locally compact Hausdorff space is regular.

(7+7)

State and prove Tietze extension theorem. 8.

(14)

ST.ALOYSIUS COLLEGE PG Library MANGALORE-575 003



St Aloysius College (Autonomous)

Mangaluru

Semester III - P.G. Examination - M.Sc. Mathematics JANUARY-2021

ORDINARY DIFFERENTIAL EQUATIONS

Time: 3 Hours

ST. ALOYSIUS COLLEGE MANGALORE 575 003

Max.Marks:70

(14x5=70)

Answer any <u>FIVE</u> full questions.

1. a) If $\phi_1(t), \phi_2(t), \phi_3(t), \dots, \phi_n(t)$ are solutions of the equation $x^{(n)}(t)+a_1(t)x^{(n-1)}(t)+\ldots +a_n(t)x(t)=0$, then prove that they are linearly independent on the interval ${\it I}$ if and only if $W(\phi_1(t), \phi_2(t), \dots, \phi_n(t)) \neq 0 \quad \forall t \in I.$

- b) Compute the Wronskian of the two independent solutions x'' - 2tx' + 2x = 0 for t > 0 given that $x_1(t) = t$ is a solution of the equation.
- c) Show that the function t^2 and t|t| are not linearly independent on [-1,0].

(7+4+3)

- 2. a) Describe the method of reduction of order to find the solution of $x'' + a_1(t)x' + a_2(t)x = 0$.
 - b) Describe the method of variation of parameters to find the solution of (7+7) $x'' + a_1(t)x' + a_2(t)x = b(t)$.
- 3. a) State and prove formula for the Wronskian.
 - b) Solve x'' 2x' + x = t + e' using the method of undetermined coefficients.
 - c) Show that the particular solution of the initial value problem x'' + x = g(t)with x(0) = 0, x'(0) = 0 is $x(t) = \int \sin(t-s)g(s) ds$. (7+3+4)
- 4. a) State and prove orthogonal property of Legendre polynomials $P_{n}(t)$.
 - b) Find the Legendre series of the function $f(x) = x^2$.
 - c) Prove that $(n+1)P_{n+1}(t) = (2n+1)tP_n(t) nP_{n-1}(t)$, where $P_n(t)$ is Legendre (7+3+4)polynomial.
- 5. a) Obtain the series solutions of the Bessel equation $t^2x'' + tx' + (t^2 n^2)x = 0$.

b) Prove that
$$\left(J_{\frac{1}{2}}(t)\right)^2 + \left(J_{-\frac{1}{2}}(t)\right)^2 = \frac{2}{\pi t}, \ t > 0.$$
 (8+6)

6. a) Let A(t) be an $n \times n$ continuous matrix on an interval I. Let $\Phi(t)$ be an $n \times n$ matrix whose i^{th} column, i = 1, 2, ..., n is a solution of x' = A(t)x, $t \in I$. Then show that $w(t) = \det \Phi(t)$ satisfies w'(t) = tr(A(t))w(t), $t \in I$. If $t_0 \in I$ then show that $w(t) = w(t_0) \exp \left(\int_{t_0}^t tr(A(s)) ds \right), \ t \in I.$

b) Using the method of successive approximation, solve the IVP $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} t & 0 \\ 0 & 2t \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \qquad \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} (0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$

(8+6)

- 7. a) Let A(t) be an $n \times n$ continuous matrix on $(-\infty, \infty)$ and be periodic with period ω . If $\phi(t)$ is a fundamental matrix for the system x' = A(t) X, then show that $\phi(t+\omega)$ is also a fundamental matrix. Show that any fundamental matrix $\phi(t)$ can be written as $\phi(t) = P(t)e^{tR}$, where P(t) is a non-singular periodic matrix of period ω and R is a constant matrix.
 - b) Find the fundamental matrix of x' = A(t)x, where $A = \begin{bmatrix} 3 & -2 \\ -2 & 3 \end{bmatrix}$.

 ST.ALOYSIUS COLLEGE

 MANGALORE-575 003

 (8+6)
- 8. a) Prove that a function ϕ is a solution of the IVP y' = f(x,y), $y(x_0) = y_0$ on an interval I if and only if it is a solution of the integral equation $y = y_0 + \int_{x_0}^x f(t,y) dt$.
 - b) Find the first four approximations of the initial value problem x'(t) = 1 + tx, x(0) = 1. (8+6)

Reg. No. :				

St Aloysius College (Autonomous)

Mangaluru

Semester III- P.G. Examination - M.Sc. Mathematics JANUARY-2021

COMMUTATIVE ALGEBRA

Time: 3 hrs.

Max Marks: 70

PART - A

Answer any <u>FIVE FULL</u> questions from the following:

(14x5=70)

- 1. a) Prove that the nilradical of a ring A is the intersection of all prime ideals of A.
 - b) Define the radical r(I) of an ideal I of a ring A.

 Prove that r(I+J) = r(r(I)+r(J)). Hence prove that r(I) and r(J) are coprime if and only if I and J are coprime.

 ST.ALOYSIUS COLLEGI (9+5)

 MANGALORE-575 003
 - 2. If l_1 , l_2 ,..., l_n are ideals in a ring A with $l_j + l_k = (1)$ whenever $j \neq k$, $1 \leq j, k \leq \dot{n}, \text{then show that } \frac{A}{\prod_{j=1}^n l_j} \cong \prod_{j=1}^n \frac{A}{l_j}$ (14)
- 3. a) If $P_1, P_2, ..., P_n$ are prime ideals of a ring A such that an ideal I of A is contained in $\bigcup_{j=1}^n P_j$, then prove that $I \subseteq P_k$ for some $k, 1 \le k \le n$.
 - b) Define the Jacobson radical J of a ring A. Show that $x \in J$ if and only if 1 xy is a unit in A, for every $y \in A$. (8+6)
- 4. a) Let M be a finitely generated A module and let I be an ideal of A contained in the Jacobson radical of A. Then prove that IM = M implies M = 0.
 - b) Let $0 \to M' \to M \to M'' \to 0$ be an exact sequence of A modules. If M' and M'' are finitely generated, then show that M is also finitely generated. (6+8)
- 5. a) If $M' \xrightarrow{f} M \xrightarrow{g} M''$ is an exact sequence of A-modules and S is a multiplicatively closed subset of a ring A, show that $S^{-1}M' \xrightarrow{S^{-1}f} S^{-1}M \xrightarrow{S^{-1}g} S^{-1}M''$ is exact.
 - b) If S is a multiplicatively closed subset of a ring A, prove that the map $P \mapsto S^{-1}P$ gives a bijective correspondence between the set of all prime ideals of A which do not meet S and the set of all prime ideals of $S^{-1}A$.

(5+9)

- 6. a) If P is a prime ideal of a ring A, show that A_p is a local ring.
 - b) If $f: A \to B$ is a ring homomorphism and P is a prime ideal of A, prove that P is the contraction of a prime ideal of B if and only if $P^{ec} = P$. (5+9)
- 7. a) State and prove the first uniqueness theorem for primary decomposition.
 - b) Obtain a minimal primary decomposition of the ideal $I=(x^2,xy)$ in A=K[x,y], where K is a field. (10+4)
- 8. Prove that a ring A is noetherian if and only if every prime ideal of A is finitely generated. (14)
