Reg. No:

St Aloysius College (Autonomous)

Mangaluru

Semester II - P.G. Examination - M. Sc. Mathematics

April - 2018

ALGEBRA - II Time: 3 Hours

Max. Marks: 70

Answer any FIVE FULL questions from the following

(14x5=70)

72

- Prove that every Euclidean domain is a principal ideal domain.
 - Let R be an integral domain in which factorization into irreducible terminates. Show that R is a unique factorization domain if and only if every irreducible element of R is a prime element of R. (4+10)
- If R is a unique factorization domain, then prove that R[x] is a unique factorization domain. ST.ALOYSIUS COLLEGE PG Library
 - Is $\mathbb{Z}[x]$ a principal ideal domain? Justify. MANGALORE-575 003 (12+2)
- Let F be a field. Prove that all units in F[x] are all non-zero elements of 3. a) F.
 - Verify whether the polynomial $x^5 64x^4 + 127x^3 200x + 99$ is irreducible MANGALORE-575 003 in $\mathbb{Q}[x]$.
 - State and prove Eisenstein's criterion for irreducibility of a polynomials in R[x], where R is a unique factorization domain.
- Prove that every finite extension of a field is an algebraic extension. Is the converse true? Justify.
 - If $F \subseteq K \subseteq L$ are fields such that, L is an algebraic extension of K and K is an algebraic extension of F, then prove that L is an algebraic extension of F.
 - Find $[Q(2+\sqrt[3]{2},\sqrt[3]{3}):Q]$. c) (7+5+2)
- 5. a) Show that the set of all constructible real numbers form a subfield of R containing Q.
 - Prove that it is impossible to trisect the angle 60° using ruler and b) compass.
 - If p is a prime number such that a regular p gon can be constructed with ruler and compass, then show that $p = 2^r + 1$ for some integer $r \ge 0$.

(6+4+4)

Let p be a prime and n be a positive integer. Then prove that there 6. a) exists a field of order p''.

- b) If K is a finite field, then show that K*, the set of all non-zero elements of K is a cyclic group with respect to multiplication.
- c) Determine the number of subfields of a field of order 5⁶⁴. (7+5+2)
- a) Let F be a field of characteristic zero. Show that every finite extension
 of F is a simple extension.
 - Is every finite extension of a field, a Galois extension? Justify your answer.
 - c) If K is finite extension of a field F of characteristic zero, then show that $O(G(K/F)) \le [K:F]$. (8+2+4)
- a) If K is a Galois extension of a field F, then prove that the fixed field of K is F.
 - b) State and prove the fundamental theorem of Galois theory. (5+9)

ST. ALOYSIUS COLLEGE

MANGALORE-575 003

Reg. No:

St Aloysius College (Autonomous)

Mangaluru Semester II – P.G. Examination - M.Sc. Mathematics

April - 2018

NUMERICAL ANALYSIS

Time: 3 Hours

Max. Marks: 70

Answer any FIVE FULL Questions:

(5x14=70)

74

- 1. a) Find a real root of the equation log x cos x = 0 by the method of Regulafalsi, correct to three decimal places.
 - Define order of an iteration method. Show that Newton-Raphson method is of second-order.
 - c) Using Newton-Raphson method, find $\frac{1}{7}$. Carry out two iterations. (6+6+2)
- 2. a) Derive the Muller method to find the real root of the equation f(x) = 0.
 - b) Find a real root of the polynomial equation $x^3 2x 5 = 0$ by Birge-Vieta method. Carry out two iterations.
 - c) State Gerschgorin theorem.

(7+5+2)

3. a) Solve the equations

$$54x + y + z = 110$$

$$2x + 15y + 6z = 72$$

$$-x + 6y + 27z = 85$$

by Gauss-Seidel iteration method. Carry out four iterations by taking $(0,0,0)^t$ as the initial solution.

b) Find the largest eigen-value and corresponding eigen-vector of the matrix

$$\begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

Carry out 5 iterations by taking $(1,1,1)^t$ as the initial eigen-vector. (7+7)

- Derive Gregory-Newton's Backward interpolation formula. Also find the truncation error.
- b) Prove the existence and uniqueness of the interpolating polynomial of a function f(x) at a given set of tabular points. (7+7)
- 5. a) Derive composite trapezoidal rule. Find its truncation error.
 - b) Using the Newton-Cotes formula, derive Simpson's $\frac{1}{3}$ rd rule.
 - c) Find the linear interpolation formula for f'(x) at $x = x_0$. (6+5+3)

PH 562.2

- 6. a) Evaluate the integral $\int_{-1}^{1} \frac{e^{-x^2}}{\sqrt{1-x^2}} dx$ using
 - i) 2-point Gauss-Chebyshev quadrature
 - ii) 3-point Gauss-Chebyshev quadrature
 - b) Derive 3-point Gauss-Legendre quadrature formula.
 - c) Evaluate the integral $\int_{y=1}^{1.5} \int_{x=1}^{2} \frac{dx \, dy}{x+y}$ using Simpson's rule with h=0.5 along x-axis and y=0.25 along y-axis. (4+5+5)
- Derive mid-point method to solve a first-order initial-value problem. Also find a local truncation error.
 - b) Solve the IVP y' = x + y, y(0) = 1 on [0, 1] with h = 0.2 using Adam-Bashforth third order method. (7+7)
- 8. a) Solve the IVP $y' = -2xy^2$, y(0) = 1, h = 0.2 on [0, 0.4] using Backward Euler method.
 - b) Derive Dahlquist second order method to solve the BVP y'' = f(x, y), $y(a) = \alpha$, $y(b) = \beta$ on [a, b].

St Aloysius College (Autonomous) Mangaluru

Semester II - P.G. Examination - M. Sc. Mathematics

April -2018 ST. ALOYSIUS COLLEGE

REAL ANALYSIS - II

MANGALORE-575 003

Time: 3 Hours

Max. Marks: 70

Answer any FIVE FULL questions from the following

(14x5=70)

76)

- Define Riemann-Stieltje's integrability for a real bounded function f on an interval [a, b] with respect to a monotonically increasing function α . If P^* is a refinement of a partition P of [a, b], then prove that $L(P, f, \alpha) \leq L(P^*, f, \alpha).$
 - If $f, g \in \mathcal{R}(\alpha)$ on [a, b], prove that $f g \in \mathcal{R}(\alpha)$ on [a, b].
 - If f is continuous on [a, b], then prove that $f \in \mathcal{R}$ on [a, b].
 - State and prove the Fundamental Theorem of Calculus.
- Let f be bounded real function defined on [a, b] and $f \in \mathcal{R}(\alpha)$ on [a, b] $m \le f(x) \le M$ for all $x \in [a,b]$. Let ϕ be a continuous real function on [m, M]. If $h(x) = \phi(f(x))$ for all x in [a, b], then prove that $h \in R(\alpha)$ on [a,b].
 - Define a rectifiable curve in \mathbb{R}^n . If a curve γ is continuously differentiable on [a, b], then prove that γ is rectifiable and that $\Lambda(\gamma) = \int_{0}^{\delta} |\gamma'(t)| dt.$ (6+8)
- Explain the terms uniform convergence and pointwise convergence of sequence of functions. State and prove Cauchy criterion for uniform convergence.
 - Let $f_n(x) = n^2 x (1 x^2)^n$, $0 \le x \le 1$, n = 1, 2, 3,... Find $\lim_{n \to \infty} f_n(x)$.
 - Let C(X) denote the class of all complex valued, continuous, bounded functions on a compact metric space X. Prove that C(X) is a complete metric space with respect to the metric $||f-g|| = \sup\{|f(x)-g(x)|: x \in X\}.$ (5+3+6)
- 4. a) Suppose $\{f_n\}$ is a sequence of functions differentiable on [a, b] and such that $\{f_n(x_0)\}$ converges for some point x_0 on [a, b]. If $\{f_n'\}$ converges uniformly on [a, b], then prove that $\{f_n\}$ converges uniformly on [a, b]to a function f and $f'(x) = \lim_{n \to \infty} f_n'(x)$ for all $x \in [a, b]$.

PH 563.2

Define equicontinuous family of functions on a set E. If K is a compactor of the compb) District space, $f_n \in C(K)$ for n = 1, 2, 3,, and if $\{f_n\}$ converges uniformly on K, then prove that $\{f_n\}$ is equicontinuous on K.

(9+5)

State and prove Stone's generalization of Weierstrass theorem.

(14)

- 6. a) Test the convergence of

Test the convergence of ST.ALOYSIUS COLLEGEi) $\int_{0}^{1} \frac{dx}{\sqrt{1-x^3}}$ ii) $\int_{0}^{\infty} \frac{dx}{x\sqrt{x^2+1}}$ MANGALORL 315 003

- b) Let ϕ be bounded on $[a, \infty)$, integrable on [a, t] for $t \ge a$. If $\int f(x)dx$ converges absolutely, then prove that $\int_{a}^{\infty} f(x)\phi(x)dx$ is convergent.
- Examine the convergence of the integral $\int_{a}^{\infty} \frac{e^{-x} \sin x}{x^2} dx$, a > 0.
- Suppose f maps an open subset E of \mathbb{R}^n into \mathbb{R}^m . When do you say that 7. a) f is differentiable in E?
 - Suppose f maps a convex open set $\,E\subseteq \mathbb{R}^n$ into $\mathbb{R}^m\,$, $\,f\,$ is differentiable b) in E and there is a real number M such that $||f'(x)|| \le M$, for all $x \in E$. Prove that $||f(b)-f(a)|| \le M||b-a||$, for all $a,b \in E$. Hence prove that if f'(x)=0 for all $x \in E$ then f is constant on E.
 - State and prove the contraction principle.

(2+6+6)

State and prove the implicit function theorem. Illustrate it in the following case:

$$n=2$$
, $m=3$, $f=(f_1, f_2)$ is a mapping from \mathbb{R}^5 to \mathbb{R}^3 given by $f_1(x_1, x_2, y_1, y_2, y_3) = 2e^{x_1} + x_2 y_1 - 4y_2 + 3$ $f_2(x_1, x_2, y_1, y_2, y_3) = x_2 \cos x_1 - 6x_1 + 2y_1 - y_3$ and $a=(0, 1)$, $b=(3, 2, 7)$

(14)

ps 564.2	p	S	5	6	4		2
----------	---	---	---	---	---	--	---

Reg. No:					
----------	--	--	--	--	--

St Aloysius College (Autonomous) Mangaluru

Semester II - P.G. Examination - M. Sc. Mathematics

April -2018

LINEAR ALGEBRA - II

Time: 3 Hours

Max. Marks: 70

Answer any FIVE FULL questions from the following

(14x5=70)

- Let V be a finite dimensional real vector space.
 - i) Define a positive definite bilinear form on \mathcal{V} . Give an example.
 - ii) If V has a positive definite bilinear form, then prove that V has an
 - Extend the vector $\frac{1}{\sqrt{3}}\begin{bmatrix}1\\1\\1\end{bmatrix}$ to an orthonormal basis of \mathbb{R}^3 .
 - Prove that a positive definite form is non-degenerate. c) (7+5+2)
- State and prove the Sylvester's law for symmetric forms on a real vector 2. space V.
- Prove the Spectral theorem for symmetric operators of Euclidean spaces.
 - Prove that real symmetric matrix A is positive definite if and only if all its eigen values are positive. (9+5)
- If V is a vector space of dimension m over a field F with non-degenerate skew-symmetric form < , >, then prove that m is even and there is a basis of V such that matrix of < , > with respect to this basis is $J_{2n} = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix}$ where $n = \frac{m}{2}$.
 - b) If S is a real, skew-symmetric matrix and I+S is invertible, prove that $(I-S)(I+S)^{-1}$ is orthogonal.
- Let M be an additive abelian group. Show that there is only one way of making M as a \mathbb{Z} -module. Further, if M is finite, then is it true that M is a free Z-module? Justify.
 - b) Let $R = \mathbb{C}[X, Y]$ and M be an ideal generated by X and Y. Is M a free R-module? Justify your answer.
 - Prove that any two bases of a free R-module M have the same cardinality, provided R is a non-zero ring. (4+6+4)Contd...2

- Page No. 2 If A is an $m \times n$ integer matrix, prove that there exist products P, Q of 6. a) elementary integer matrices such that QAP-1 is diagonal.
 - If $\phi: V \to W$ is a homomorphism of free abelian groups then show that b) there exist bases of V and W such that the matrix of the homomorphism ϕ has diagonal form. (9+5)
- 7. a) Define a Noetherian ring. If M is a finitely generated module over a Noetherian ring R, then prove that every submodule of M is finitely generated.
 - Prove that a finitely generated module M over a Noethrian ring R has a b) presentation matrix.
- c) Identify the abelian group which has as a presentation matrix. MANGALORE-573 001
 - Prove the structure theorem for finitely generated abelian groups. 8. (8+4+2)

******* (14)

ST. ALCYSIUS COLLEGE MANGALORE-575 003

pH 561.2

Dog	No:	_
reg	140:	

St Aloysius College (Autonomous)

Mangaluru Semester II - P.G. Examination - M.Sc. Mathematics

April - 2019

ALGEBRA II

Time: 3 Hours

Max. Marks: 70

Answer any FIVE FULL Questions:

(5x14=70)

- 1, a) Prove that every Euclidean domain is principal ideal domain (PID). Give an example of PID which is not a Euclidean domain.
 - b) Prove that every principal ideal domain is a unique factorization domain (UFD).
- 2. a) If f(x) and g(x) are primitive polynomials in $\mathbb{Z}[x]$ then prove that, their product is also primitive. Chryslif J. 530 MANGALORE-535 nns
 - b) Prove that $\mathbb{Z}[x]$ is a unique factorization domain.

(5+9)

- 3, a) Let $f(x) = a_n x^n + ... + a_1 x + a_0$ be an integer polynomial and p be a prime integer such that $p \nmid a_n$. If the residue \overline{f} of f modulo p is an irreducible element in $\mathbb{F}_p[x]$, then prove that f is irreducible element in $\mathbb{Q}[x]$.
 - b) Verify whether the polynomial $x^2 + x + 1$ is irreducible in $\mathbb{Q}[x]$.
 - c) Find $[\mathbb{Q}(\sqrt{2},i):\mathbb{Q}(\sqrt{2})]$

ST.ALOYSIUS COLLEGE PG Library MANGALORE-575 003

(8+3+3)

- 4. a) Let K be an extension of field F and $\alpha, \beta \in K$ be algebraic over F. Then prove that there exists an F-isomorphism from $F(\alpha)$ to $F(\beta)$ which sends α to β if and only if α and β have the same minimal polynomial in F[x].
 - b) Prove or disprove the following:
 - i) Every finite extension of a field F is an algebraic extension.
 - ii) Every algebraic extension is a finite extension.

(8+6)

- 5. a) If a > 0 is constructible real number, then prove that \sqrt{a} is also constructible.
 - b) Decide whether or not the regular 9-gon is constructible by ruler and compass.
 - c) Let p be a prime and n be a positive integer. Prove that there exists a unique field of order p^n up to isomorphism. (4+2+8)
- 6, a) Define an algebraically closed field. Prove that no finite extension of Q is algebraically closed.

PH 561.2

Page No. 2 (4+10)

- b) State and prove fundamental theorem of Algebra.
- 7. a) Prove that every finite extension of a field of characteristic zero has a primitive element.
 - b) Find the splitting field and degree of the splitting field of $x^4 2$ over \mathbb{Q} . (9+5)
- 8. a) If K is a finite extension of a field F of characteristic zero, then show that $\mathcal{O}(G\left(K/F\right)) \leq [K:F].$
 - b) Let $K = \mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$. Prove that K is Galois extension of \mathbb{Q} . Determine its Galois group. (8+6)

ST. ALOYSIUS COLLEGE PG Library MANGALORE-575 003

MANGALORE-515 003

Reg. No:

St Aloysius College (Autonomous)

Semester II - P.G. Examination - M. Sc. Mathematics

April - 2019

NUMERICAL ANALYSIS

Time: 3 Hours

Answer any FIVE FULL questions from the following Max. Marks: 70

- Apply Newton-Raphson's method to determine a root of the equation (14x5=70) $\cos x - xe^x = 0$. Carry out four iterations. b)
 - Derive the Regula-Falsi method to find the root of an equation f(x) = 0.
 - Find a real root of $2x \log_{10} x = 7$ correct to 3 decimal places using iteration method.
- Using Muller's method find a root of the equation $x^3 x 1 = 0$. 2. a) (6+5+3)
 - b) Apply Gauss-Jordan method to solve the equations

$$x + y + z = 9$$

 $2x - 3y + 4z = 13$
 $3x + 4y + 5z = 40$

ST.ALOYSIUS COLLEGE MANGALORE-575 003

Find the largest eigen-value and the corresponding eigen-vector of the

$$\text{matrix} \begin{bmatrix}
 25 & 1 & 2 \\
 1 & 3 & 0 \\
 2 & 0 & -4
 \end{bmatrix}$$

carry out 3 iterations by taking (1, 1, 1)' as the initial eigen vector.

500 272-1HOJ (4+5+5)

- 3. a) Use synthetic division and perform two iterations by Birge-Vieta method to find the smallest positive root of the equation $x^4 - 3x^3 + 3x^2 - 3x + 2 = 0$.
 - Derive the Chebyshev method to find the real root of the equation f(x) = 0. (7+7)
- From the following table of values of x and y, obtain $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at

$$x = 1.0$$

x	1.0	1.0 1.2	
у	2.718	3.326	4.055

- Evaluate $\int_{1}^{2} \int_{1}^{4} (x^2 xy + y^2) dx dy$, h = k = 2 using the trapezoidal rule.
- Derive one-point Gauss-Legendre formula. C)

(6+5+3)

- Derive Gregory Newton's forward interpolation formula. 5. a)
 - The pressure β of wind corresponding to velocity ν is given by the b) following data. Estimate β when $\nu = 25$.

ν	10	20	30	40
β	1.1	2.0	4.4	7.9

(7+)

- Derive Hermite's interpolation formula for the data points $(x_i, y_i), (x_i, y_i')$ i = 0,1,...,n.
 - Obtain the least square polynomial approximation of degree one and t_{N_0} b) for $f(x) = \sqrt{x}$ on [0, 1].
- Using Runge-Kutta method of order four, find the solution of y at x=0.27. a) (6+8) for the IVP $\frac{dy}{dx} = y - x$, y(0) = 2. Take h = 0.1b)
 - Derive Adams Moulton method to solve the Initial Value Problem. (7+7)
- 8. a) Use finite difference method to solve the Boundary Value Problem defined by y'' + xy' - 2y = 0 y(0) = 1, y(1) = 2 take $h = \frac{1}{4}$. b)
 - From the Taylor series for the initial value problem y'(t) = y(t), y(0) = 1find y(0.1). Also show that the truncation error satisfies

ST. ALOYSIUS COLLEGE MANGALORE-575 003

PH 563.2

Reg. No:			

St Aloysius College (Autonomous)

Mangaluru
Semester II - P.G. Examination - M. Sc. Mathematics
April - 2019

REAL ANALYSIS - II

Time: 3 Hours

Max. Marks: 70

Answer any FIVE FULL questions from the following

(14x5=70)

- a) Let f be a bounded real function defined on [a, b]. Define the Riemann integral of f over [a, b].
 - b) If $f, g \in \mathcal{R}(\alpha)$ on [a, b], prove that $f + g \in \mathcal{R}(\alpha)$ on [a, b].
 - c) If f is monotonic on [a, b], prove that $f \in \mathcal{R}$ on [a, b].
 - d) State and prove the Fundamental Theorem of Calculus. (3+3+3+5)
- a) Suppose f is bounded on [a, b], f has only finitely many points of discontinuity on [a, b], and α is continuous at every point at which f is discontinuous. Prove that f ∈ R(α) on [a, b].
 - b) Define a rectifiable curve in \mathbb{R}^n . If a curve γ is continuously differentiable on [a, b], prove that γ is rectifiable and that

$$\Lambda(\gamma) = \int_{a}^{b} |\gamma'(t)| dt.$$
ST.ALOYSIUS COLLEGE
PG Library
MANGALORE-575 003
(7+7)

- a) Define the notions of pointwise convergence and uniform convergence of a sequence {f_n} of functions. State and prove Cauchy criterion for uniform convergence of a sequence of functions.
 - b) Let $f_n(x) = \frac{\sin(nx)}{\sqrt{n}} \ \forall x \in \mathbb{R}, \ n = 1, 2, 3,...$ Prove that $\{f_n\}$ converges to a function f but $\{f_n'\}$ does not converges to f'.
 - Suppose {f_n} is a sequence of functions, differentiable on [a, b] and such that {f_n (x₀)} converges for some x₀ ∈ [a,b]. If {f_n'} converges uniformly on [a, b], then prove that sequence {f_n} converges uniformly on [a, b].
 Further if f(x) = lim_{n→∞} f_n(x) for all x ∈ [a,b], prove that
 f'(x) = lim_{n→∞} f_n(x) for all x ∈ [a, b].
- 4. a) Suppose K is compact, {f_n} is a sequence of continuous functions that converge pointwise to a continuous function f on K and f_n(x)≥ f_{n+1}(x) for all x ∈ K, n = 1,2,3,.... Prove that f_n → f uniformly on K.
 - Prove that there exists a real continuus function on the real line which is nowhere differentiable. (7+7)

- Define equicontinuous family of functions on a set E. If K is a $c_{Onp_{\hat{p}_{\hat{q}_{Q}}}}$ metric space, if $f_n \in C(K)$ for n = 1, 2, 3,, and if $\{f_n\}$ converges uniformly on K, then prove that the family $\{f_n : n \ge 1\}$ is equicontinuous
 - If f is a continuous complex function on [a, b], prove that there $e_{X_{i_{5}i_{5}}}$ sequence $\{P_n\}$ of polynomials such that $P_n \to f$ uniformly on [a, b].

(5+9)

- 6. a) Test the convergence of $\int_{0}^{1} \frac{dx}{\sqrt{1-x^3}}$.
 - Prove that every absolutely convergent integral is convergent.
 - c) Let ϕ be bounded on $[a, \infty)$, integrable on [a, t] for $t \ge a$. Let $\int f(x)dx$

converge absolutely at ∞ . Prove that $\int_{-\infty}^{\infty} f(x)\phi(x)dx$ is absolutely

MANGAL®RE-575 no convergent at ∞.

(2+5+7)

- Suppose E is an open set in \mathbb{R}^n , f maps E into \mathbb{R}^m , when do you say that f is differentiable in E?
 - b) If $f(x, y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{for } (x, y) \neq (0, 0) \\ 0 & \text{for } (x, y) = (0, 0) \end{cases}$

Prove that $(D_1 f)(x, y)$ and $(D_2 f)(x, y)$ exist at every point of \mathbb{R}^2 and f is not continuous at (0, 0)

- Suppose E is an open set in \mathbb{R}^n , f maps E into \mathbb{R}^m , f is differentiable at $x_0 \in E$, g maps an open set containing f(E) into \mathbb{R}^k and g is differentiable at $f(x_0)$. Then prove that the mapping F of E into \mathbb{R}^k defined by F(x) = g(f(x)), for all $x \in E$ is differentiable at x_0 and $F'(x_0) = g'(f(x_0)) f'(x_0).$
- State and prove the contraction principle. 8. a)
 - State and prove the inverse function theorem. b)

(7+7)

(2+4+8)

			-
			61 -
			11.6
			100
_	_		

ps 564.2

St Aloysius College (Autonomous) Mangaluru

Reg. No:

Semester II - P.G. Examination - M. Sc. Mathematics April - 2019

LINEAR ALGEBRA - II

ine: 3 Hours Answer any FIVE FULL questions from the following

Max. Marks: 70 (14x5=70)

- If A is the matrix of a bilinear form with respect to a basis, then prove that the matrices A' which represents the same form with respect to different bases are the matrices $A' = QAQ^t$ for some invertible matrix Q.
 - If V is a finite dimensional vector space with positive definite bilinear form, then show that V has an orthonormal basis.
 - Find an orthonormal basis for \mathbb{R}^2 with respect to the form X^tAY , where

$$A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}.$$

ST. ALOYSIUS COLLEGE PG Library J.J.J.O.) 20172014 MANGALORE-575 003

(4+6+4)

State and prove Sylvester's law of symmetric form on a real vector space. 2.

(14)

- Prove that eigenvalues of symmetric operator are real. 3. a)
 - State and prove the spectral theorem for symmetric operators.
 - If A is a real symmetric matrix then show that there exists an orthogonal matrix P such that $PAP^t = D$, where D is a real diagonal matrix.

(2+8+4)

- Show that a real symmetric $n \times n$ matrix A is positive definite if $\det A_i$ is 4. a) positive for all i, $1 \le i \le n$ where A_i is the upper left $i \times i$ submatrix of A.
 - b) If V is a finite dimensional complex vector space with hermitian form <, > and V has an orthonormal basis, then prove that <, > is positive definite.
 - Show that the matrix relating two orthonormal bases of a hermitian space (7+3+4)is unitary.
- Prove that any two bases of the same free module over a ring R have the 5. a) same cardinality.
 - Prove or disprove the following:
 - i) A submodule of a free module is free
 - ii) Every linearly independent set in a free module can be extended to a (7+7)basis.

PS 564.2

Page No. 2

- 6. If V is a finitely generated module over a Noetherian ring, then prove the following:
 - i) Every submodule of V is finitely generated.
 - ii) V has a presentation matrix.

(9+5)

(14)

- a) If A is an m×n integer matrix, prove that there exist products P, Q of elementary integer matrices such that QAP is diagonal.
 - b) If φ: V → W is a homomorphism of free abelian groups, then prove that there exist bases of V and W such that the matrix of φ has the diagonal form.
 State and prove the second second (9+5)
- State and prove the structure theorem for abelian groups.

ST.ALOYSIUS COLLEGE, JOSEPH DO SUISYOJA.TS
PG Library COLLEGE, JOSEPH DO MANGALORE-S75 003 COLLEGE MANGALORE-S75 000 COLLE