D	u	5	s	1		1
۲	п	3	o	1	٠	Ŧ

Reg. No:	
----------	--

St Aloysius College (Autonomous) Mangaluru

Semester I – P.G. Examination- M.Sc. Mathematics November/December - 2023

ALGEBRA I

Time: 3 Hours

Max. Marks: 70

Answer any FIVE FULL questions from the following.

(14x5=70)

- 1. a) Let H and K be subgroups of a group G and let $\varphi: H \times K \to G$ be defined by $\varphi(h,k) = hk, \forall (h,k) \in H \times K$. Then prove the following:
 - i. φ is one-one if and only if $H \cap K = \{e\}$.
 - ii. If H and K are normal subgroups of G such that $H \cap K = \{e\}$ and HK = G, then $G \cong H \times K$.
 - b) Prove that a subset H of \mathbb{Z} is a subgroup if and only if $H=a\,\mathbb{Z}$ for some $a\in\mathbb{Z}$. (6+8)
- 2. a) State and prove the Lagrange's theorem.
 - b) Define a cyclic group. Prove that every subgroup of a cyclic group is cyclic.

ST. ALOYSIUS COLLEGE (8+6)

3. a) Prove the following:

PG Library MANGALORE-575 002

- i. Let G be a finite group and let $a \in G$. Then $o(a) \mid o(G)$.
- ii. Every group of prime order is cyclic.
- b) Define a subgroup of a group G. If G is a group and H is a nonempty subset of G then prove that H is a subgroup of G if and only if $ab^{-1} \in H$, $\forall a,b \in H$.
- c) Define center of a group. Show that center of a group ${\it G}$ is a subgroup of ${\it G}$.

(5+5+4)

- a) State and prove second Sylow theorem for a finite group.
 - b) Define a p-group. If p is a prime number, then prove that any group of order p^2 is cyclic or isomorphic to a product of two cyclic groups each of order p.

(8+6)

- 5. a) Let G be a finite group and H be a subgroup of G of index m > 1 such that $o(G) \nmid m!$. Then prove that G has a non-trivial normal subgroup.
 - Define orbit of an element. Let G be a finite group, S be a nonempty set such that G acts on S, and let $S \in S$. Then prove that the order of orbit of S is the index of the stabilizer of S in G, i.e., $|O_S| = [G:G_S]$. Hence show that $O(G) = O(O_S) O(G_S)$.

(6+8)

PH 561.1 Page No. 2

6. a) Determine all possible class equations of groups of order 21 and 8.

b) Show that every group of order 15 is simple.

(8+6)

a) Define an integral domain. Prove that every integral domain can be embedded in a field.

b) Prove that, an ideal P of a ring R is a prime ideal if and only if R/P is an integral domain.
 ST.ALOYSIUS COLLEGE
PG Library
MANGALORE-575 802

(8+6)

8. a) Prove that every finite integral domain is a field.

- b) Prove that a commutative ring R is a field if and only if the only ideals of R are (0) and itself.
- c) Let R be a ring with identity. Then prove that the set of all units of R is a group with respect to multiplication in R.

(5+5+4)

		and the second second contraction of the second
Reg No	:	

ST ALOYSIUS COLLEGE (AUTONOMOUS) MANGALURU

Semester I - P.G. Examination - M.Sc. Mathematics November/December - 2023

LINEAR ALGEBRA I

Time: 3 Hours PG Lib	rary	(14x5=70
1. a) Define elementary matrices. Prove that elementary		6
b) i) Does the equation $AB - BA = I$ have solution	on in real $n \times n$ matrices A and B ?	8
justify		
ii) Let A be an $n \times n$ matrix with integer entries. A^{-1} has integer entries if and only if det $A = \pm 1$	1.	
2. a) Prove that any $m \times n$ matrix can be reduced to operations.		7
b) Let $A = (a_{ij})$ be an $n \times n$ matrix. Derive the confidence A .	omplete expansion of determinant of	7
 a) Prove that the following conditions are equivalent 1. A can be reduced to the identity matrix by operations 	applying elementary	8
A is a product of elementary matrices		
3. A is invertible 4. The system $AX = 0$ has only the trivial sol	ution.	
b) Prove that for any $n \times n$ matrix A , $A(adjA) =$		6
 a) If A is an n × n matrix with entries in a field F a basis of Fⁿ if and only if A is invertible. 	, show that the columns of A forms	6
 b) If S and L are finite subsets of a vector space I linearly independent, then show that S contains Deduce that any two bases of a finite dimension number of elements; 	alleast as many crements as	8
 a) Let V be an n-dimensional vector space and le Prove that the collection of all ordered bases of 	et $\mathcal B$ be an ordered basis of V . V is $\{\mathcal BP \colon P \in GL_n(F)\}$.	8
b) Define the matrix of change of basis. Prove that invertible. Determine the matrix of change of e_1, e_2, \ldots, e_n and the new basis is (e_n, e_{n-1}, e_n)	basis when the old basis is	6
6. a) If W_1 and W_2 are subspaces of a finite dimensional then prove that $\dim(W_1 + W_2) = \dim W_1 + \dim W_2$	onal vector space V over a field F	8
b) If W is a subspace of a finite dimensional vector that there exists a subspace W' of V such that V	or space V over a field F then prove	6
7. a) Show that a map $\rho : \mathbb{R}^2 \to \mathbb{R}^2$ is a rotation abomatrix of ρ with respect to the standard basis is	but the origin in \mathbb{R}^2 if and only if the	6
b) For a linear operator T on a finite dimensional $\dim(\ker T) + \dim(\operatorname{im} T) = \dim V$. Hence s	vector space V , prove that how that a linear operator on a finite	8
dimensional vector space is one-one if and only		

- 8. a) Let T: V → W be a linear map of the vector spaces V, W over a field F of dimensions n, m respectively. Prove that there exist bases B, C of V, W respectively, such that the matrix of T with respect to B and C is of the form \[\begin{bmatrix} I_r & 0 \ 0 & 0 \end{bmatrix}, where r = \text{rank } T. \]
 6. a) Let T: V → W be a linear map of the vector spaces V, W over a field F of the matrix of T with respect to B and C is of the form \[\begin{bmatrix} I_r & 0 \ 0 & 0 \end{bmatrix} \]
 - b) Compute the characteristic polynomial, eigenvalues and eigenvectors of the matrix $\begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}$.

ST.ALOYSIUS COLLEGE PG Library MANGALORE-575 002

	and the last
Reg No :	

ST ALOYSIUS COLLEGE (AUTONOMOUS) MANGALURU

Semester I - P.G. Examination - M.Sc. Mathematics November/December - 2023 REALANALYSIS I

Time : 3 Hours Answer FIVE FULL questions	lax. Marks: 70 (14x5=70)
1. a) Let $A=\{p\in\mathbb{Q}:p>0,p^2<2\}$ and $B=\{p\in\mathbb{Q}:p>0,p^2>2\}$. Show that B is greatest lower bound in \mathbb{Q} .	as no 5
b) If $\{I_n\}$ is a sequence of intervals in $\mathbb R$ such that $I_n\supseteq I_{n+1}, n=1,2,\ldots$ then prove the $\bigcap_{n=1}^{\infty}I_n$ is non-empty.	nat 5
c) Show that a finite subset of a metric space X has no limit points in X .	4
2. a) Prove that every k —cell in \mathbb{R}^k is compact. ST.ALOYSIUS COLLEGE PG Library MANGALORE-575 003	8
b) Let X be a metric space and $Y \subseteq X$. Prove that a subset E of Y is open relative to Y only if $E = G \cap Y$ for some open set G of X .	if and 6
3. a) Prove that compact subsets of a metric space are closed.	6
b) If E is a subset of \mathbb{R}^k , then prove that the following properties are equivalent i). E is closed and bounded i). E is compact.	8
4. a) State and prove the Ratio test. Also test the convergence of the series $x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$. 6
b) Prove that $\lim_{n\to\infty} (1+\frac{1}{n})^n = e$. Also prove that e is irrational.	8
5. a) State and prove the comparison test. If $ x <1$, then prove that $\sum_{n=0}^{\infty}x^n=rac{1}{1-x}$	8
b) Define a subsequence. If $\{p_n\}$ is a sequence in a compact metric space X , then some subsequence of $\{p_n\}$ converges to a point of X .	6
6. a) State and prove the comparison test. If $ x < 1$, then prove that $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$	6
b) (i) Suppose X, Y, Z are metric spaces, $E \subseteq X$, f maps from E into Y, g maps the rate f and h is the mapping of E into Z defined by $h(x) = g(f(x)), \forall x \in E$. If f is continuous a point $p \in E$ and if g is continuous at the point $f(p)$, then show that h is continuous	inuous at
(ii) Show that continuous image of a connected set is connected.	
7. a) If f is a continuous mapping of a compact metric space X into \mathbb{R}^k , then prove that f closed and bounded. Also show that f is bounded.	X) is 8
b) Prove that a mapping f of a metric space X into a metric space Y is continuous if and $f^{-1}(V)$ is open in X for every open set V in Y .	l only if 6
8. a) State and prove chain rule for differentiation.	6
b) State and prove Taylor's theorem.	8

	-		
PS	20) 4 ,	

Reg. N	lo:					
		and the latest designation of	or I has belonged	uminate shelps	CONTRACTOR	GENORAL

St Aloysius College (Autonomous) Mangaluru

Semester I - P.G. Examination - M. Sc. Mathematics
November/December - 2023

GRAPH THEORY

Time: 3 Hours

Max. Marks: 70

Answer any FIVE FULL questions from the following

(14x5=70)

- a) Prove that in a graph G, closed walk of odd length contains an odd cycle
 - b) Define a bipartite graph. Prove that graph G is bipartite if and only if all cycles are even ST.ALOYSIUS COLLEGE (6+8)

 PG Library

 MANGALORE-575 003
- 2. a) Define the complement \overline{G} of a graph G. For any graph G, with 6 points, prove that G or \overline{G} contains a triangle.
 - b) Show that the maximum number of lines among all p point graphs with no triangle is $\left[\frac{p^2}{4}\right]$, where p is even. (4+10)
- a) Prove that a cubic graph has a cutpoint if and only if it has a bridge.
 - b) Let G be a connected graph with at least 3 points. If G is a block then prove that every point and line of G lie on a common cycle.

(8+6)

- 4. a) For a (p,q) graph G , prove that the following are equivalent:
 - i) G is a tree
 - ii) Every two points of G are joined by a unique path
 - iii) G is connected and p = q + 1
 - iv) G is acyclic and p = q + 1
 - b) Prove that every tree has a center consisting of either one point or two adjacent points.
- 5. State and prove Menger's theorem. (14)
- 6. a) Define a planar graph. Is K_5 and $K_{3,3}$ planar? Justify. If G is a plane map with p vertices, q edges and r faces then prove that p-q+r=2.
 - b) Prove that any planar graph is 5 colorable. (6+8)
- 7. a) Prove that every planar graph G with $p \ge 4$ points has atleast four points of degree not exceeding 5.

b) Prove that the following are equivalent for a connected graph G:

i) G is Eulerian

ST.ALOYSIUS COLLEGE

ii) every point of G is of even degree

MANGALORE-575 003

iii) the set of lines of G can be partitioned into cycles.

(6+8)

8 a) If G is a (p,q) plane graph with k components then prove that p-q+r=k+1. Define maximal planar graph. If G is a (p,q) maximal plane graph then prove that every face is a triangle and q=3p-6.

b) Prove that, for every graph G with p' points, $\frac{p}{\beta_0} \le \chi(G) \le p - \beta_0 + 1$

where $oldsymbol{eta}_{\scriptscriptstyle{0}}$ is the point independence number of G .

(7+7)

ST ALOYSIUS COLLEGE (AUTONOMOUS) MANGALURU

Semester I - P.G. Examination - M.Sc. Mathematics

November/December - 2023

ORDINARY DIFFERENTIAL EQUATIONS

Time: 3 Hours Answer FIVE FULL questions		Max. Marks: 70 (14x5=70)
a) Describe the method of variation of parameter non-homogeneous linear second order equations	rs for finding a particular solution of on.	8
b) Using the method of reduction of order obtain $x'' - 2tx' + 2x = 0$.	the general solution of	6
 a) Prove that n solutions φ₁, φ₂,, φ_n of xⁿ + linearly independent over I if and only if W($a_1(t)x^{n-1}+\ldots+a_n(t)x=0$ on I are $\phi_1,\phi_2,\ldots,\phi_n)(t) eq 0$ for all $t\in I$.	8
b) Find the general solution of $t^2x'-2tx'+2t$		6
 a) State and prove Abel's formula for nth order lequation. 		6
b) Solve $x^{(4)} + 4x = 2sint + 1 + 3t^2 + 4e^t$.	ST.ALOYSIUS COLLEGE PG Library MANGALORE-575 003	8
4. a) Define the Legendre polynomial of degree n formula $P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n$.		8
b) Find the Legendre series expansion of e^x .		6
5. a) State and prove the orthogonal property of th	e Legendre polynomials.	6
b) Obtain $J_p(t)$ as the solution of the Bessel's e where p is not an integer.		8
6. a) Show that $\Phi(t)=\begin{pmatrix}e^{3t}&2te^{3t}\\0&e^{3t}\end{pmatrix}$ is a fundation $X'=A(t)X$ where, $A(t)=\begin{pmatrix}3&2\\0&3\end{pmatrix}$.	mental matrix of the system	5
b) Prove that the set of all solutions of the syste dimensional vector space over the field of co	om $X' = A(t)X$, $t \in I$ forms an n -omplex numbers.	- 4
c) Let Φ be a fundamental matrix of the system $\psi(t) = \int_{t_0}^t \Phi^{-1}(s)b(s)ds$, particular solution with $x(t_0) = 0$. If $x_h(t)$ is a solution of the $X'(t) = A(t)X(t), x(t_0) = x_0, t_0, t \in I$ the also a solution $X'(t) = A(t)X(t) + b(t), x(t_0) = x_0$	n of $X'(t)=A(t)X(t)+b(t), t\in I$ initial value problem en prove that $F(t)=x_h(t)+\psi(t)$ is	5
7. a) Let Φ be the fundamental matrix of $X'(t) =$ nonsingular matrix then prove that ΦC is als any fundamental matrix of the given system singular matrix C	so a fundamental matrix. Also prove the	5 nat
b) Let $A(t)$ be an $n \times n$ continuous matrix on $\Phi(t)$ is a fundamental matrix for the system $\Phi(t + \omega)$ is also a fundamental matrix.		4
		Contd 2

	PS 567.1	Page No. 2
	c) If A is an $n \times n$ constant matrix, prove that e^{tA} is a fundamental matrix of the	5
	system $x' = Ax$. ST.ALOYSIUS COLLEGE	
8.	a) State and prove Picard's theorem MANGALORE-575 003	8
	b) Let $f(t,x)$ be a continuous function defined over a rectangle $R = \{(t,x): t-t_0 \leq p, x-x_0 \leq q\}$ where p,q are some positive real	6
	numbers. Let $\frac{\partial f}{\partial x}$ be defined and continuous on R then prove that $f(t,x)$ satisfies	es
	Lipschitz condition on R.Is converse true justify?	