ST ALOYSIUS COLLEGE (AUTONOMOUS) MANGALURU

Semester III - P.G. Examination - M.Sc. Mathematics

November/December - 2023

	November/December - 2023 COMPLEX ANALYSIS I	
	ST.ALOYSIUS COLLEGE PG Library MANGALORE-575 003	Max. Marks: 70 (14x5=70)
1.	a) Show that z and z' correspond to diametrically opposite points on the Riemann sphere if and only if $z\bar{z}'=-1$.	5
	b) Derive a formula to find square roots of a non-zero complex number. Find the four values of $\sqrt[4]{-1}$.	4
	c) Show that $ a+b ^2= a ^2+ b ^2+2Rea\bar{b}$ where $a,b\in\mathbb{C}$. Also show that if $a,b\in\mathbb{C}$ then $ a+b = a + b $ if and only if $a\bar{b}\geq 0$.	5
2.	a) State and prove Lucas theorem.	6
	b) Prove that for every power series with radius of convergence R , the series converges for all z with $ z < R$.	8
3.	a) Define the exponential function e^z and show that e^{iz} has a least positive period 2π and all other periods are integer multiples of 2π .	8
	b) Prove that $U(x,y)=x^2-y^2$ for all $x\in\mathbb{R}$ is harmonic. Find the corresponding analytic function.	6
4.	a) State and prove Morera's theorem.	5
	b) Evaluate $\int_{ z =1} \frac{e^z}{z-a} dz$	5
	c) Show that the index of a with respect to a piece-wise differentiable closed curve γ which does not pass through a is constant in each of the regions determined by γ	4
5.	a) Show that the cross ratio (z_1, z_2, z_3, z_4) is real if and only if the four points z_1, z_2, z_3, z_4 lie on a circle or on a straight line	8
	b) If $p(x,y)$ and $q(x,y)$ are real or complex valued continuous functions defined in a region Ω and if γ is any curve in Ω then show that $\int_{\gamma} p dx + q dy$ depends only on the end points of γ if and only if there exists a function $u(x,y)$ in Ω with $\frac{\partial u}{\partial x} = p$ and $\frac{\partial u}{\partial y} = q$.	6
6.	a) When do you say that the points z and z^* are symmetric with respect to the circle through z_1, z_2 and z_3 ? Show that $w = \frac{z-1}{z+1}$ maps the imaginary axis in the z -plane onto the circle $ w = 1$.	
	b) Define length of an arc. Find the length of the arc $z=z(t)=t+i2t,\ t\in [1,2]$.	4
	Coughy's integral formula and compute $\int_{ z =2}^{\infty} \frac{dz}{z^2+1}$.	
7.	a) If $\varphi(\xi)$ is continuous on an arc γ , show that $F_n(z) = \int_{\gamma} \frac{\varphi(\xi)}{(\xi - z)^n} d\xi$ is analytic in each of the regions determined by γ and its derivative is $F'_n(z) = nF_{n+1}(z)$.	n 8
	each of the regions determined by f and f be a linear transformation which fixes f , f , f show b) Define cross ratio. Let f be a linear transformation which fixes f , f , f show the identity map.	6
	that T must be the identity map.	Contd 2

that T must be the identity map.

	PH 561.3	Page No. 2
8.	a) If $f(z)$ is analytic on a rectangle R except at a point a in the interior of R and if $\lim_{z\to a}(z-a)f(z)=0$, then show that $\int_{\partial R}f(z)dz=0$.	5
	b) State and prove open mapping theorem. Also state and prove maximal principal for analytic function	5
	c) Find the value of $\int_{ z =2} \frac{e^z}{z-1} dz$.	4
	女女肯女女	

ST.ALOYSIUS COLLEGE PG Library MANGALORE-575 002

			-
	16	7	•
41	56	1	••

Reg No :	

ST ALOYSIUS COLLEGE (AUTONOMOUS) MANGALURU Semester III - P.G. Examination - M.Sc. Mathematics November/December - 2023 TOPOLOGY

me: 3 Hours aswer <u>FIVE</u> FULL questions	Max. Marks: 70 (14x5=70)
1. a) Define and compare the standard, lower limit and the k - topology on the	real line R 8
b) If $\mathcal B$ and $\mathcal B'$ are bases for the topologies τ and τ' respectively on a set show that τ' is finer than τ if and only if for each $x \in X$ and each basis $B \in \mathcal B$ containing x , there is a basis element $B' \in \mathcal B'$ such that $x \in B$	element
2. a) Define a closed set in a topological space X . Let Y be a subspace of X . subset A of Y is closed in Y if and only if $A = C \cap Y$ for some closed s	Prove that a 6 set C in X .
 b) Show that A is the disjoint union of int(A) and Bd(A). Also prove the and only if A is closed. 3. a) Prove or disprove: Every T₁ - space is a T₂ - space. 	COLLEGE
b) Prove that a space X is Hausdorff if and only if the diagonal $\Delta = \{x \times \text{closed in the product space } X \times X.$	
c) Show that product of two Hausdorff spaces is Hausdorff.	5
4. a) Let $f: A \to X \times Y$ be given by $f(a) = (f_1(a), f_2(a)), \forall a \in A$. Then continuous if and only if the coordinate functions $f_1: A \to X$ and $f_2: A \to X$ and $f_2: A \to X$ and $f_3: A \to X$	prove that f is $A \rightarrow Y$ are
b) Show that a continuous open map need not be closed.	4
c) State and prove the pasting lemma.	5
5. Define a homeomorphism. If $f: X \to Y$ is a bijective continuous map when and Y is Hausdorff, then prove that f is a homeomorphism.	here X is compact 14
6. a) Define a separation for a topological spaces. Prove that a finite product spaces is connected	of connected 8
b) Prove that every open covering of a compact metric space has a Lebesg	ue number. 6
 7. a) Define a separable space. Prove that every second countable space is set the converse holds if X is metrizable 	parable. Show that 8
	gular. 6
b) Define a regular space. Show that every compact Hausdorff space is re	14
8. State and prove the Urysohn lemma.	

ST ALOYSIUS COLLEGE (AUTONOMOUS) MANGALURU

Semester III - P.G. Examination - M.Sc. Mathematics

November/December - 2023

NUMERICAL ANALYSIS WITH COMPUTATIONAL LAB

3	e: 3 Hours		
aswer	FIVE	FULL	questions

Max. Marks: 70 (14x5=70)

1. a) Find the largest eigen value in modulus and the corresponding eigen vector of the matrix using power method.

 $A = \begin{bmatrix} 10 & -12 & 6 \\ 20 & -4 & 2 \end{bmatrix}$

b) Perform 3 iterations of the Bairstow method to extract the quadratic factor $x^2 + pq + q$ from the polynomial $P(x) = x^3 + x^2 - x + 2$.

6

2. a) Solve the equation $f(x) = x^3 - 5x + 1$, $x_0 = 0$, $x_1 = 0.5$, $x_2 = 1$ using Muller's method.

8

b) State and prove Braver theorem.

6

3. a) Solve the equation $f(x) = cos x - e^x$ using Bisection method, upto two decimal points.

6

b) Describe briefly Gauss -Jordan method. Find the inverse of the co-efficients using Gauss Jordan method matrix of the system

8

with pivoting and hence solve the system.

8

4. a) Derive Gregory-Newton backward difference interpolation formula. b) For the following data calculate the forward and backward difference

6

polynomials. Compute at x = 0.5 and x = 0.35. 0.1 0.2 0.3 0.4 0.5 f(x) 1.40 1.56 1.76 2.0 2.28

8

5. a) Derive Composite Simpson's 1/3rd rule and Gauss Quadrature one-point formula. Also apply the Gauss Quadrature method to solve the integral $I=\int_1^2 \frac{2x}{1+x^4}dx$ and compare it with the original solution.

b) Given the following values of f(x) = ln(x), find the approximte value of f'(2.0) using linear and quadratic interpolation and f''(2.0) using quadratic interpolation.

6

i

6. a) Evaluate the integral $\int_1^{1.5} \int_1^2 \frac{1}{x+y} dx dy$ using Simpson's $1/3^{\rm rd}$ rule with h = 0.5 along x-axis and k = 0.25 along y-axis.

6

b) Derive Lobatto 3-point formula.

8

6

7. a) State and prove Taylor series method and also derive its formula for error.

8

b) Using Adam-Bashworth's 3rd order method solve the initial value problem $u' = u^3t$, u(0) = 1 on [0, 1] with h = 0.2.

Contd., 2

	Page No. 2
PH 563.3	6
8. a) Using Huen's method solve the initial value problem $u' = u^3 + t^2$, $u(0) = 1$. Estimate $u(0.4)$ when $h = 0.2$.	rval 8
b) Solve the initial value problem $u' = u + t$, $u(0) = 1$, $h = 0.2$ in the interpolation $[0, 1]$ using fourth order R-K method.	, and
· · · · · · · · · · · · · · · · · · ·	

ST.ALOYSIUS COLLEGE PG Library MANGALORE-575 003

2

ST ALOYSIUS COLLEGE (AUTONOMOUS) MANGALURU Semester III - P.G. Examination - M.Sc. Mathematics November/December - 2023

COMMUTATIVE ALGEBRA

me: 3 Hours	
PARTIE DAILY	ax. Marks: 70
1. a) Show that only idempotents in a local ring are 0 and 1.	(14x5=70)
b) Prove that every proper ideal in a ring is contained in a maximal ideal.	4
c) Define the Jacobson radical $J(A)$ of a ring A . If U denotes the class of all units in A , then show that the Jacobson radical $J(A) = \{x \in A : 1 - xy \in U \ \forall \ y \in A\}$.	5
 a) Define the prime spectrum Spec(A) of a ring A. Prove that Spec(A) is a compact topological space. 	8
b) If I and J are any two ideals of a ring A , then prove that $r(I+J)=r(r(I)+r(J))$.	6
3. a) Let $f:A\to B$ be a ring homomorphism. Define extended and contracted ideals. For the ideals I and J in A , Prove that $1.(IJ)^e=I^eJ^e$	8
2. $(I:J)^e\subseteq (I^e:J^e)$ 3. $r(I)^e\subseteq r(I^e)$ 4. $(I+J)^e=I^e+J^e$ 5. $(I\cap J)^e\subseteq I^e\cap J^e$.	
b) Define radical $r(I)$ of an ideal in a ring A . Show that $r(P^n) = P$ for any prime ideal P and $n \in \mathbb{N}$.	6
4. a) If M is a nonzero finitely generated A -module then prove that M is isomorphic to a quotient of A^n for some $n \in \mathbb{N}$.	4
b) Let A be a ring and M be a finitely generated A-module and let I an ideal of A such that $IM = M$. Prove that there exists $x \equiv 1 \pmod{I}$ such that $xM = 0$.	h 5
c) State and prove Nakayama's lemma.	5
5. a) Let $g: A \to B$ be a ring homomorphism and S be a multiplicatively closed set in A such that $g(s)$ is a unit in B for every $s \in S$. Prove that there is a unique ring homomorphism $h: S^{-1}A \to B$ such that $g = h \circ f$, where $f: A \to S^{-1}A$ given	6 by
$f(a) = a.1$ $a \in A$. b) Let A be a ring and S be a multiplicatively closed set in A. Show that the ring of	3
fractions $S^{-1}A$ is the zero ring if and	5
A) If I are ideals of a ring A , with J finitely generated then show that	
$S^{-1}(I:J) = (S^{-1}:J^{-1})^{-1}$	ne 9
 6. a) Let S be a multiplicatively closed subset of a ring A. Prove that there is a one-to-or correspondence between the set of all prime ideals of S⁻¹A and the set of all prime ideals of S - 1 A which do not meet S. 	
ideals of A which do not meet S .	Contd

5

5

4

- b) Let A be a ring and let M, N be a A-modules. For a prime ideal P let \mathcal{M}_P denote the $S^{-1}A$ -module $S^{-1}M$, where S=A-P. Prove that the following statements are equivalent:
 - 1. M = 0
 - 2. $\mathcal{M}_m = 0$ for each maximal ideal m of AMANGALORE-575 003 3. $\mathcal{M}_p = 0$ for each maximal ideal p of A
- 7. a) Define an exact sequence of modules. Let M, M^\prime and $M^{\prime\prime}$ be A-modules, and S be a multiplicatively closed subset of A. If $M' \stackrel{f}{\to} M \stackrel{g}{\to} M''$ is exact at M then show that $S^{-1}M' \xrightarrow{S^{-1}f} S^{-1}M \xrightarrow{S^{-1}g} S^{-1}M''$ is exact at $S^{-1}M$.
 - b) Let I be an ideal of a ring A, and let S=1+I. Show that S is a multiplicatively closed subset of A. Further, show that S=1+I is contained in the Jacobson radical of $S^{-1}A$.
 - 5 c) Describe the localization of a ring A at a prime ideal P of A.
- 8. a) Define a P- primary ideal in a ring. Show that the intersection of finitely many P-5 primary ideals is P-primary.
 - b) Define an irreducible ideal in a ring. In a Noetherian ring A prove that every ideal is a 5 finite intersection of irreducible ideals.
 - c) Let Q be a P-primary ideal in a ring A, x an element of A. Then prove the following 4 1. if $x \in Q$ then (Q : x) = (1)
 - 2. if $x \notin Q$ then (Q:x) is P-primary, and therefore r(Q:x) = P