Reg. No:

St Aloysius College (Autonomous)

Mangaluru

Semester II - P.G. Examination - M. Sc. Mathematics May/June -2023

ALGEBRA II

PG LIBERTY FANGALORI**MANS Marks: 70**

Time: 3 Hours

Answer any FIVE FULL questions from the following

- a) Define a unique factorization domain. Prove that every principal ideal domain is a unique factorization domain.
 - b) Prove that in an integral domain every prime element is irreducible.
 Does the converse hold? Justify (9+5)
- 2. a) State and prove Gauss lemma.
 - b) Prove that the maximal ideals in a principal ideal domain are the principal ideals generated by irreducible elements.
 - c) Prove that the polynomial ring $\mathbb{Z}[x]$ is a unique factorization domain. (4+3+7)
- 3. a) If K is an extension field of F and $\alpha \in K$, then show that $F[\alpha]$ is a field if and only if α is algebraic over F.
 - b) Let K and L be an extensions of a field F. Let $\alpha \in L$ and $\beta \in K$ be algebraic over F. Prove that there exist an F-isomorphism from $F(\alpha)$ to $F(\beta)$ if and only if α and β are the roots of the same irreducible polynomial over F.
- 4. a) Factor $x^3 + x + 1$ in $F_p[x]$, when p = 2, 3 and 5.
 - b) Is a regular 7 gon constructible? Justify
 - c) Determine $[\mathbb{Q}(3\sqrt{2}, 4\sqrt{5}):\mathbb{Q}].$ (6+4+4)
- a) Prove that the set of all constructible numbers forms a subfield of R containing Q.
 - b) Let p be a prime number and n be a positive integer. Prove that there exists a field with p^n elements. (7+7)
- 6. a) Find the splitting field and degree of extension of the splitting field of $f(x) = x^6 + x^3 + 1$ over \mathbb{Q} .
 - b) State and prove the primitive element theorem. (6+8)
- 7. a) If G is a finite group of automorphism of a field K and F is the fixed field of G then, show that O(G) = [K:F]
 - b) Let G be a finite group of automorphisms of a field K. Let F be a fixed field of G and $(\beta_1,\beta_2,...,\beta_r)$ be orbit of $\beta\in G$ under the action of G on K. Prove that $(x-\beta_1)(x-\beta_2)...(x-\beta_r)$ is the minimal polynomial of β and r|O(G). (7+7)
- 8 a) State and prove the fundamental theorem of Galois theory.
 - b) Let K be a finite extension of a field F. Prove that K is a Galois extension of F if and only if K is the splitting field of a separable polynomial with coefficients in F. (9+5)

Reg. No:				
reg. no.				

St Aloysius College (Autonomous) Mangaluru

Semester II - P.G. Examination- M. Sc. Mathematics

May/June - 2023

MANGALORE-575 003

REAL ANALYSIS - II

Time: 3 Hours

Answer any FIVE FULL questions from the following

(14x5=70)

Max. Marks: 70

- 1. a) Let f be a bounded real function defined on [a,b] and α be a monotonically increasing function on [a,b]. Define the upper and lower Riemann integrals of f with respect to α over [a,b]. Prove that $f \in \mathcal{R}(\alpha)$ on [a,b] if and only if for every $\varepsilon > 0$ there exists a partition P of [a,b] such that $U(P,f,\alpha) L(P,f,\alpha) < \varepsilon$.
 - b) If f is continuous on [a, b], then prove that $f \in \mathcal{R}(\alpha)$ on [a, b].
 - c) If f is bounded real function on [a,b] with $f \in \mathcal{R}(\alpha_1)$ and $f \in \mathcal{R}(\alpha_2)$ on [a,b] then prove that $f \in \mathcal{R}(\alpha_1+\alpha_2)$ on [a,b] and

$$\int_{a}^{b} f d(\alpha_1 + \alpha_2) = \int_{a}^{b} f d\alpha_1 + \int_{a}^{b} f d\alpha_2.$$
 (6+3+5)

- 2. a) Suppose α is monotonically increasing on [a,b] and $\alpha' \in \mathcal{R}$ on [a,b]. Let f be bounded real valued function on [a,b]. Then show that $f \in \mathcal{R}(\alpha)$ if and only if $f\alpha' \in \mathcal{R}$.
 - b) If a curve γ is continuously differentiable on [a,b] then prove that γ is rectifiable and that $\Lambda(\gamma) = \int_a^b |\gamma'(t)| dt$. (7+7)
- a) State and prove Cauchy criterion for uniform convergence of a sequence of functions.
 - b) Let $f_n(x) = \frac{\sin(nx)}{\sqrt{n}}$, $\forall x \in \mathbb{R}, n = 1, 2, ...$ Show that the sequence $\{f_n\}$ converges to a function f but $\{f'_n\}$ does not converge to f'.
 - c) Let α be monotonically increasing on [a,b]. Suppose $f_n \in \mathcal{R}(\alpha)$ on [a,b] for n=1,2,3,..., and suppose $f_n \to f$ uniformly on [a,b]. Then prove that $f \in \mathcal{R}(\alpha)$ on [a,b] and $\int\limits_a^b f \, d\alpha = \lim\limits_{n \to \infty} \int\limits_a^b f_n \, d\alpha$. (4+4+6)
- 4. a) Let C(X) denote the set of all complex valued, continuous bounded functions on a metric space X. Show that C(X) is a complete metric space with respect to the metric $\|f-g\| = \sup_{x \in X} |f(x)-g(x)|$, $f,g \in C(X)$.
 - Prove that there exists a real continuous function on the real line which is nowhere differentiable. (5+9)

Contd...2

State and prove Stone's generalization of Weierstrass theorem.

(14)

- 6. a) If {f_n} is a pointwise bounded sequence of complex functions on a countable set E, then prove that {f_n} has a subsequence {f_{nk}} such that {f_{nk}(x)} converges for every x ∈ E.
 - Define equicontinuous family of functions on a set E. If K is a compact metric space, $f_n \in C(K)$ for n=1,2,3,..., and if $\{f_n\}$ converges uniformly on K, then prove that $\{f_n\}$ is equicontinuous on K.
- 7. a) Test the convergence of $\int_0^1 \frac{dx}{\sqrt{1-x^3}}$
 - b) Let ϕ be bounded on $[a, \infty)$, integrable on [a,t] for $t \ge a$. If $\int_a^\infty f(x) dx$ converges absolutely, then prove that $\int_a^\infty f(x) \phi(x) dx$ is convergent.
 - Prove that every absolutely convergent integral is convergent.
 (3+7+4)
- 8. a) State and prove the contraction principle.
 - b) State and prove the implicit function theorem. (6+8)

			relati
PS	200	-	-
D-6	100	D 4	

Reg. No. :

St Aloysius College (Autonomous)

Mangaluru

Semester II - P.G. Examination - M.Sc. MATHEMATICS May/June 2023

RESEARCH METHODOLOGY AND ETHICS

Time: 3 Hours

PG Library MANGALORE-575 003 Max. Marks: 70

Answer any FIVE FULL questions from the following:

- 1.a) What do you mean by research? Explain its significance in modern times.
 - b) What are the characteristics of a good research problem?
 - c) How is fundamental research different from applied research? Elaborate.

(6+3+5)

- 2.a) What are the problems encountered by researchers in India?
 - b) Explain the importance of setting clear research objectives and discussing the role of motivation in research. Provide examples to support your answer.

(8+6)

- 3.a) Distinguish between research methods and research methodology.
 - b) How does a statement of the problem differ from research questions and objectives? (7+7)
- 4.a) What are the benefits of conducting a literature review in the research process, and how does it contribute to the overall research study?
 - b) Explain the different types of referencing styles in a research report.

(7+7)

- 5.a) What are the essential rules that should be followed while writing a mathematical document? How can one effectively write definitions, theorems, and proofs in mathematical writing?
 - b) Explain the role of TeX editor in a mathematical writing. (8+6)
- 6.a) Discuss the concept of research ethics and their significance in academic research. Provide examples of ethical misconduct in research and explain the consequences of such behaviour.
 - b) What are the advantages and limitations of adhering to research ethics?
 (7+7)
- 7.a) What is meant by scientific misconduct, and what are the different types of scientific misconduct that researchers should be aware of?
 - b) How can universities and academic institutions promote awareness about the consequences of plagiarism among students and researchers? (6+8)
- 8.a) Describe the concept of Intellectual Property Rights. Why is it important for researchers and scholars to understand the concept of Intellectual Property Rights?
 - b) Write the meaning and importance of patents, copyrights and trademarks.

(7+7)

PS 564.2

Reg.	No.				
-				_	

St Aloysius College (Autonomous) Mangaluru

Semester II - P.G. Examinations - M.Sc. Mathematics

May/June - 2023 LINEAR ALGEBRA-II

ST.ALOYSIUS COLLEGE PG Library MANGALORE-575 003

LINEAR ALGEBRA

Time: 3 Hours Max. Marks: 70

Answer any FIVE FULL questions from the following:

 $(14 \times 5 = 70)$

- (a) If A is the matrix of a bilinear form with respect to a basis, then prove that the matrices A' which represent the same form with respect to different bases are the matrices A' = QAQ^t for some invertible matrix Q.
 - (b) If V is a finite dimensional real vector space with positive definite bilinear form, then prove that V has an orthonormal basis.
 - (c) Find an orthonormal basis for \mathbb{R}^2 with respect to the form X^tAY , where $A = \begin{bmatrix} 2 & 5 \\ 5 & 2 \end{bmatrix}$ (4+6+4)
- 2. State and prove the Sylvester's law for symmetric form on a real vector space V. (14)
- 3. (a) Prove the Spectral theorem for a Hermitian operator on a Hermitian space.
 - (b) Let A be a real symmetric matrix. Prove that e^A is symmetric and positive definite.

(8+6)

- 4. (a) Let T be a linear operator on a Hermitian space V and let T^* be the adjoint operator. Then show that
 - (i) T is Hermitian if and only if $\langle T(v), w \rangle = \langle v, T(w) \rangle$ for all $v, w \in V$.
 - (ii) T is unitary if and only if $\langle T(v), T(w) \rangle = \langle v, w \rangle$ for all $v, w \in V$.
 - (iii) T is normal if and only if $\langle T(v), T(w) \rangle = \langle T^*(v), T^*(w) \rangle$ for all $v, w \in V$.
 - (b) Find a unitary matrix P so that PAP^* is diagonal, where $A = \begin{bmatrix} 1 & -i \\ -i & 1 \end{bmatrix}$
 - (c) Prove that the eigen values of a Hermitian operator are real. (6+5+3)
- 5. (a) Let R be a ring and V be a free R-module of finite rank. Prove or disprove the following:
 - (i) Every submodule of V is free.
 - (ii) Every set of generators contains a basis of V
 - (b) State and prove Schur's lemma.
 - (c) Let R be a non-zero ring. Prove that any two bases of a free R-module have the same cardinality. (5+4+5)

Contd...

PS 564.2

 (a) Let A be a non-zero m × n integer matrix. Then prove that there exists products P, Q of elementary interger matrices such that

where each d_i is a positive integer, $1 \le i \le r$, and each one divides the next: $d_1 \mid d_2 \mid \cdots \mid d_r$.

- (b) Find a basis for the \mathbb{Z} -module of all integer solutions of the system AX = 0, when $A = \begin{bmatrix} 4 & 7 & 2 \\ 2 & 4 & 6 \end{bmatrix}$ (8+6)
- (a) Prove that the following conditions on an R-module V are equivalent:
 - (i) Every submodule of V is finitely generated
 - (ii) V satisfies the ascending chain condition.
 - (b) Let $\phi: V \to W$ be an R-module homomorphism. Prove that if $\ker \phi$ and $\operatorname{Im} \phi$ are finitely generated, then V is finitely generated.
 - (c) If W is a submodule of an R-module V such that W and V/W are finitely generated, then show that V is finitely generated. (7+4+3)
- 8. (a) State and prove Structure Theorem for Abelian Groups. (14)

St Aloysius College (Autonomous) Mangaluru

Semester IV - P.G. Examination - M. Sc. Mathematics May / June 2023

ALGEBRAIC NUMBER THEORY

Time: 3 Hours

Max. Marks: 70

Answer any FIVE FULL questions from the following

(14x5=70)

- 1. a) State and prove Gauss Lemma.
 - b) If p and q are distinct odd primes, then prove that

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{(p-1)(q-1)}{4}}$$
 ST.ALOYSIUS COLLEGE

PG Library

MANGALORE-575 003 (7+7)

- 2. a) Prove or disprove: set of all algebraic numbers is uncountable.
 - b) If α is a real algebraic number of degree n > 1, then show that there exists a positive constant $c(\alpha)$ such that for any rational number p/q

with
$$(p,q)=1$$
, $q>0$, the inequality $\left|\alpha-\frac{p}{q}\right|>\frac{c(\alpha)}{q^n}$ holds.

c) Show that $\sum_{n=0}^{\infty} \frac{1}{10^{n!}}$ is transcendental.

(4+5+5)

- 3. a) Define Euler's totient function φ . Show that it is multiplicative.
 - b) Prove or disprove: If (m, n) = 1, then $(\varphi(m), \varphi(n)) = 1$.
 - c) If (a, m) = 1, then show that $a^{\varphi(m)} \equiv 1 \pmod{m}$. Determine the last two digits of 3^{2020} .

(6+2+6)

- 4. a) Let 'p' be a prime and $f(x) = c_0 + c_1 x + \dots + c_n x^n$ be a polynomial with integer coefficients, such that $c_n \not\equiv 0 \pmod{p}$. Then prove that the polynomial congruence $f(x) \equiv 0 \pmod{p}$ has at most n solutions.
 - b) State and prove Wilson's theorem.
 - c) If p is an odd prime, then show that

$$1^2 \cdot 3^2 \cdot 5^2 \dots (p-2)^2 \equiv (-1)^{\frac{p+1}{2}} \pmod{p}$$
.

(5+5+4)

Contd...2

- 5. a) Let K be an algebraic number field and $[K : \mathbb{Q}] = n$. If $\alpha \in K$ and $\sigma_1, \sigma_2, ... \sigma_n$ are the distinct \mathbb{Q} -isomorphisms of K into \mathbb{C} , then prove that
 - i) $Tr_k(\alpha) = \sigma_1(\alpha) + \sigma_2(\alpha) + \cdots + \sigma_n(\alpha)$
 - ii) $N_k(\alpha) = \sigma_1(\alpha) \sigma_2(\alpha) \dots \sigma_n(\alpha)$

Further if $\alpha \in \mathcal{O}_k$, then show that $Tr_k(\alpha)$ and $N_k(\alpha)$ are integers.

b) Prove that every algebraic number field has an integral basis.

(7+7)

6. a) If $K = \mathbb{Q}(\sqrt{d})$, where d is a square-free integer show that

$$O_K = \begin{cases} \mathbb{Z} + \mathbb{Z}\sqrt{d}, & \text{if } d \equiv 2 \text{ or } 3 (mod \ 4) \\ \mathbb{Z} + \mathbb{Z}\left(\frac{1+\sqrt{d}}{2}\right), & \text{if } d \equiv 1 (mod \ 4) \end{cases}$$

b) Solve $y^2 + 2 = x^3$, for $x, y \in \mathbb{Z}$.

(8+6)

- 7. a) Let K be an algebraic number field. If I, J are non-zero ideals of \mathcal{O}_K with $I \subseteq J$, then show that N(I) > N(J).
 - b) Define a Dedekind domain. Prove that \mathcal{O}_K is a Dedekind domain.

(4+10)

- 8. a) If \mathscr{D} is a prime ideal of \mathscr{O}_K , then prove that \mathscr{D}^{-1} is a fractional ideal and $\mathscr{D}\mathscr{D}^{-1} = \mathscr{O}_K$.
 - b) Prove that every ideal in \mathcal{O}_K can be written as product of prime ideals uniquely.

(7+7)
